Slicing Spheroids in Microfluidic Devices for Morphological and Immunohistochemical Analysis.

embedding resin immunohistochemistry microfluidic device sectioning spheroid

Journal

Micromachines
ISSN: 2072-666X
Titre abrégé: Micromachines (Basel)
Pays: Switzerland
ID NLM: 101640903

Informations de publication

Date de publication:
06 May 2020
Historique:
received: 21 04 2020
revised: 02 05 2020
accepted: 04 05 2020
entrez: 10 5 2020
pubmed: 10 5 2020
medline: 10 5 2020
Statut: epublish

Résumé

Microfluidic devices utilizing spheroids play important roles in in vitro experimental systems to closely simulate morphological and biochemical characteristics of the in vivo tumor microenvironment. For the observation and analysis of the inner structure of spheroids, sectioning is an efficient approach. However, conventional microfluidic devices are difficult for sectioning, and therefore, spheroids inside the microfluidic channels have not been sliced well. We proposed a microfluidic device created from embedding resin for sectioning. Spheroids were cultured, embedded by resin, and sectioned in the microfluidic device. Slices of the sectioned spheroids yielded clear images at the cellular level. According to morphological and immunohistochemical analyses of the slices of the spheroid, specific protein distribution was observed.

Identifiants

pubmed: 32384758
pii: mi11050480
doi: 10.3390/mi11050480
pmc: PMC7281316
pii:
doi:

Types de publication

Journal Article

Langues

eng

Déclaration de conflit d'intérêts

The authors declare no conflict of interest.

Références

J Exp Clin Cancer Res. 2017 Aug 3;36(1):102
pubmed: 28774341
Biomicrofluidics. 2016 Jul 20;10(4):044107
pubmed: 27493703
Exp Cell Res. 2014 Apr 15;323(1):131-43
pubmed: 24480576
Cell. 2015 Jul 16;162(2):246-257
pubmed: 26186186
Appl Immunohistochem Mol Morphol. 2020 Jan;28(1):36-41
pubmed: 30095463
Int J Pharm. 2014 Apr 10;464(1-2):168-77
pubmed: 24440400
Biotechnol Bioeng. 2019 Oct;116(10):2742-2763
pubmed: 31282993
Mol Cell Proteomics. 2005 Apr;4(4):394-401
pubmed: 15677390
Nat Protoc. 2007;2(1):9-22
pubmed: 17401332
Mol Ther Nucleic Acids. 2014 Mar 11;3:e153
pubmed: 24618852
Clin Cancer Res. 2013 Jul 15;19(14):3745-54
pubmed: 23674494
Molecules. 2018 Dec 18;23(12):
pubmed: 30567363
Molecules. 2018 Oct 30;23(11):
pubmed: 30380716
Sci Rep. 2018 Jun 8;8(1):8785
pubmed: 29884887
Biotechnol J. 2008 Oct;3(9-10):1172-84
pubmed: 18566957
Nature. 2013 Sep 19;501(7467):346-54
pubmed: 24048067
Biomaterials. 2010 Oct;31(28):7386-97
pubmed: 20598741
J Biomol Screen. 2004 Jun;9(4):273-85
pubmed: 15191644
Micromachines (Basel). 2020 Feb 07;11(2):
pubmed: 32046058
Cancer Sci. 2018 Apr;109(4):1166-1176
pubmed: 29465762
Anat Histol Embryol. 2016 Jun;45(3):219-30
pubmed: 26287450
J Gastrointest Oncol. 2012 Sep;3(3):262-84
pubmed: 22943017
Nat Commun. 2013;4:2718
pubmed: 24177351
Lab Chip. 2018 Dec 7;18(23):3687-3702
pubmed: 30393802
Appl Immunohistochem Mol Morphol. 2018 Feb;26(2):83-93
pubmed: 28719380
Biomaterials. 2020 Jan;229:119547
pubmed: 31710953
SLAS Discov. 2018 Feb;23(2):211-217
pubmed: 29072965
Micron. 2014 Jul;62:66-78
pubmed: 24811993
Mod Pathol. 2012 Oct;25(10):1345-53
pubmed: 22684216

Auteurs

Satoru Kuriu (S)

Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Kanagawa 226-8503, Japan.

Tetsuya Kadonosono (T)

Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8503, Japan.

Shinae Kizaka-Kondoh (S)

Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8503, Japan.

Tadashi Ishida (T)

Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Kanagawa 226-8503, Japan.

Classifications MeSH