[Lung organoids].
Les organoïdes pulmonaires.
Alveolar Epithelial Cells
/ cytology
Animals
Bioengineering
/ methods
Carbon Dioxide
/ pharmacology
Cell Culture Techniques
/ methods
Cells, Cultured
Gene Editing
/ methods
Humans
Lung
/ cytology
Models, Biological
Organoids
/ cytology
Oxygen
/ pharmacology
Pulmonary Gas Exchange
/ physiology
Respiratory Mucosa
/ cytology
Tissue Scaffolds
/ chemistry
Journal
Medecine sciences : M/S
ISSN: 1958-5381
Titre abrégé: Med Sci (Paris)
Pays: France
ID NLM: 8710980
Informations de publication
Date de publication:
Apr 2020
Apr 2020
Historique:
entrez:
2
5
2020
pubmed:
2
5
2020
medline:
2
10
2020
Statut:
ppublish
Résumé
As burden of chronic respiratory diseases is constantly increasing, improving in vitro lung models is essential in order to reproduce as closely as possible the complex pulmonary architecture, responsible for oxygen uptake and carbon dioxide clearance. The study of diseases that affect the respiratory system has benefited from in vitro reconstructions of the respiratory epithelium with inserts in air/liquid interface (2D) or in organoids able to mimic up to the arborescence of the respiratory tree (3D). Recent development in the fields of pluripotent stem cells-derived organoids and genome editing technologies has provided new insights to better understand pulmonary diseases and to find new therapeutic perspectives. Les organoïdes pulmonaires. L’impact en santé publique des pathologies respiratoires chroniques ne cesse de croître. Dans ce contexte, il paraît indispensable d’améliorer les modèles d’études du poumon afin de reproduire au plus proche l’architecture pulmonaire complexe, garante des fonctions d’oxygénation et d’épuration du gaz carbonique. Les connaissances actuelles en physiopathologie respiratoire résultent en partie des études de modèles de reconstitution d’épithélium bronchique in vitro à partir de cellules primaires, en deux dimensions sur des inserts, ou en trois dimensions, en organoïdes mimant jusqu’à l’arborescence pulmonaire. Le développement de ces modèles in vitro a connu un nouvel essor grâce aux organoïdes pulmonaires issus de cellules souches pluripotentes et la démocratisation des outils d’édition du génome. Ces apports technologiques récents offrent de nouvelles perspectives en matière de thérapeutiques ou de compréhension physiopathologique et pourraient, dans le futur, ouvrir les portes de la médecine régénératrice pulmonaire.
Autres résumés
Type: Publisher
(fre)
Les organoïdes pulmonaires.
Identifiants
pubmed: 32356715
doi: 10.1051/medsci/2020056
pii: msc200027
doi:
Substances chimiques
Carbon Dioxide
142M471B3J
Oxygen
S88TT14065
Types de publication
Journal Article
Review
Langues
fre
Sous-ensembles de citation
IM
Pagination
382-388Subventions
Organisme : Fondation pour la Recherche Médicale
ID : FDM20170638083
Informations de copyright
© 2020 médecine/sciences – Inserm.
Références
GBD 2017. Causes of death collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. Lancet Lond Engl 2018; 392 : 1736–88.
Ekelund L , Arvidson G , Emanuelsson H , et al. Effect of cortisol on human fetal lung in organ culture: a biochemical, electron-microscopic and autoradiographic study. Cell Tissue Res 1975 ; 163 : 263–272.
Zimmermann B. . Lung organoid culture. Differ Res Biol Divers 1987 ; 36 : 86–109.
Nadkarni RR , Abed S , Draper JS . Organoids as a model system for studying human lung development and disease. Biochem Biophys Res Commun 2016 ; 473 : 675–682.
Plasschaert LW , Žilionis R , Choo-Wing R , et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 2018 ; 560 : 377–381.
Dye BR , Miller AJ , Spence JR . How to grow a lung: applying principles of developmental biology to generate lung lineages from human pluripotent stem cells. Curr Pathobiol Rep 2016 ; 4 : 47–57.
Ahmed E , Sansac C , Assou S , et al. Lung development, regeneration and plasticity: from disease physiopathology to drug design using induced pluripotent stem cells. Pharmacol Ther 2018 ; 183 : 58–77.
Morrisey EE , Hogan BLM . Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 2010 ; 18 : 8–23.
Hardin-Pouzet H , Morosan S . Organismes-modèles et réglementation de la recherche animale. Med/Sci (Paris) 2019 ; 35 : 153–156.
Boers JE , Ambergen AW , Thunnissen FB . Number and proliferation of clara cells in normal human airway epithelium. Am J Respir Crit Care Med 1999 ; 159 : 1585–1591.
Rock JR , Randell SH , Hogan BLM . Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 2010 ; 3 : 545–556.
Jobe AH . Animal models, learning lessons to prevent and treat neonatal chronic lung disease. Front Med 2015 ; 2 : 49.
Gras D , Petit A , Charriot J , et al. Epithelial ciliated beating cells essential for ex vivo ALI culture growth. BMC Pulm Med 2017 ; 17 : 80.
Kast JI , McFarlane AJ , Głobin΄ska A, et al. Respiratory syncytial virus infection influences tight junction integrity. Clin Exp Immunol 2017 ; 190 : 351–359.
Rayner RE , Makena P , Prasad GL , et al. Optimization of normal human bronchial epithelial (NHBE) cell 3D cultures for in vitro lung model studies. Sci Rep 2019 ; 9 : 500.
Gras D , Martinez-Anton A , Bourdin A , et al. Human bronchial epithelium orchestrates dendritic cell activation in severe asthma. Eur Respir J 2017 ; 49.
Gao X , Bali AS , Randell SH , et al. GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J. Cell Biol 2015 ; 211 : 669–682.
Rock JR , Gao X , Xue Y , et al. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 2011 ; 8 : 639–648.
Barkauskas CE , Cronce MJ , Rackley CR , et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 2013 ; 123 : 3025–3036.
Franzdóttir SR , Axelsson IT , Arason AJ , et al. Airway branching morphogenesis in three dimensional culture. Respir Res 2010 ; 11 : 162.
Danahay H , Pessotti AD , Coote J , et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep 2015 ; 10 : 239–252.
Rosen C , Shezen E , Aronovich A , et al. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nat Med 2015 ; 21 : 869–879.
Sucre JMS , Vijayaraj P , Aros CJ , et al. Posttranslational modification of β-catenin is associated with pathogenic fibroblastic changes in bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017 ; 312 : L186–L195.
Huh D , Matthews BD , Mammoto A , et al. Reconstituting organ-level lung functions on a chip. Science 2010 ; 328 : 1662–1668.
De Vos J , Bouckenheimer J , Sansac C , et al. Human induced pluripotent stem cells: a disruptive innovation. Curr Res Transl Med 2016 ; 64 : 91–96.
Firth AL , Dargitz CT , Qualls SJ , et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci USA 2014 ; 111 : E1723–E1730.
Huang SXL , Green MD , de Carvalho AT , et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc 2015 ; 10 : 413–425.
Wong AP , Bear CE , Chin S , et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 2012 ; 30 : 876–882.
Gotoh S , Ito I , Nagasaki T , et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep 2014 ; 3 : 394–403.
Konishi S , Gotoh S , Tateishi K , et al. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep 2016 ; 6 : 18–25.
McCauley KB , Hawkins F , Kotton DN . Derivation of epithelial-only airway organoids from human pluripotent stem cells. Curr Protoc Stem Cell Biol 2018 ; 45 : e51.
Yamamoto Y , Gotoh S , Korogi Y , et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 2017 ; 14 : 1097–1106.
Chen YW , Huang SX , de Carvalho ALRT , et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 2017 ; 19 : 542–549.
Dye BR, Dedhia PH, Miller AJ, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife 2016; 5.
Miller AJ , Hill DR , Nagy MS , et al. In vitro induction and in vivo engraftment of lung bud tip progenitor cells derived from human pluripotent stem cells. Stem Cell Rep 2018 ; 10 : 101–119.
Dye BR, Hill DR, Ferguson MAH, et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015; 4.
Ronaldson-Bouchard K , Ma SP , Yeager K , et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018 ; 556 : 239–243.
McCauley KB , Hawkins F , Serra M , et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 2017 ; 20 : 844–57 e6.
Strikoudis A , Cies΄lak A, Loffredo L, et al. Modeling of Fibrotic Lung Disease Using 3D Organoids Derived from Human Pluripotent Stem Cells. Cell Rep 2019 ; 27 : 3709–23 e5.
Mianné J , Ahmed E , Bourguignon C , et al. Induced pluripotent stem cells for primary ciliary dyskinesia modeling and personalized medicine. Am. J Respir Cell Mol Biol 2018 ; 59 : 672–683.
Porotto M, Ferren M, Chen YW, et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio 2019; 10.
Gilpin SE , Wagner DE . Acellular human lung scaffolds to model lung disease and tissue regeneration. Eur Respir Rev 2018 ; 27.
Peng T , Tian Y , Boogerd CJ , et al. Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature 2013 ; 500 : 589–592.
Takebe T , Sekine K , Enomura M , et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013 ; 499 : 481–484.
Grigoryan B , Paulsen SJ , Corbett DC , et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019 ; 364 : 458–464.