Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
03
05
2019
accepted:
01
04
2020
revised:
01
04
2020
pubmed:
30
4
2020
medline:
12
10
2021
entrez:
30
4
2020
Statut:
ppublish
Résumé
Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.
Identifiants
pubmed: 32346159
doi: 10.1038/s41380-020-0725-5
pii: 10.1038/s41380-020-0725-5
doi:
Substances chimiques
Histone-Lysine N-Methyltransferase
EC 2.1.1.43
Setd1A protein, human
EC 2.1.1.43
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2013-2024Subventions
Organisme : Medical Research Council
ID : MR/P009085/1
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : UM1 HG008900
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG009141
Pays : United States
Informations de copyright
© 2020. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Association AP diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.
Beckwith EJ, Geissmann Q, French AS, Gilestro GF. Regulation of sleep homeostasis by sexual arousal. eLife. 2017;6:e27445. pii.
pubmed: 28893376
pmcid: 5630259
doi: 10.7554/eLife.27445
De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.
pubmed: 25363760
pmcid: 4402723
doi: 10.1038/nature13772
Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.
pubmed: 25363768
pmcid: 4313871
doi: 10.1038/nature13908
Lee JH, Skalnik DG. Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol. 2008;28:609–18.
pubmed: 17998332
doi: 10.1128/MCB.01356-07
Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA. 2001;98:12902–7.
pubmed: 11687631
pmcid: 60797
doi: 10.1073/pnas.231473398
Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J, Washburn MP, et al. The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol. 2011;31:4310–8.
pubmed: 21875999
pmcid: 3209330
doi: 10.1128/MCB.06092-11
Takahashi YH, Westfield GH, Oleskie AN, Trievel RC, Shilatifard A, Skiniotis G. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci USA. 2011;108:20526–31.
pubmed: 22158900
pmcid: 3251153
doi: 10.1073/pnas.1109360108
Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95.
pubmed: 22663077
pmcid: 4010150
doi: 10.1146/annurev-biochem-051710-134100
Li Y, Jiao J. Histone chaperone HIRA regulates neural progenitor cell proliferation and neurogenesis via beta-catenin. J Cell Biol. 2017;216:1975–92.
pubmed: 28515277
pmcid: 5496612
doi: 10.1083/jcb.201610014
Tajima K, Yae T, Javaid S, Tam O, Comaills V, Morris R, et al. SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes. Nat Commun. 2015;6:8257.
pubmed: 26394836
doi: 10.1038/ncomms9257
Higgs MR, Sato K, Reynolds JJ, Begum S, Bayley R, Goula A, et al. Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2. Mol Cell. 2018;71:25–41.e26.
pubmed: 29937342
pmcid: 6039718
doi: 10.1016/j.molcel.2018.05.018
Eising E, Carrion-Castillo A, Vino A, Strand EA, Jakielski KJ, Scerri TS, et al. A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Mol Psychiatry. 2018;24:1065–78.
pubmed: 29463886
pmcid: 6756287
doi: 10.1038/s41380-018-0020-x
Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J, et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci. 2016;19:571–7.
pubmed: 26974950
pmcid: 6689268
doi: 10.1038/nn.4267
Yu X, Yang L, Li J, Li W, Li D, Wang R, et al. De novo and inherited SETD1A variants in early-onset Epilepsy. Neurosci Bull. 2019;35:1045–57.
pubmed: 31197650
pmcid: 6864154
doi: 10.1007/s12264-019-00400-w
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36:928–30.
pubmed: 26220891
pmcid: 4833888
doi: 10.1002/humu.22844
Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;34:1721–6.
pubmed: 24123792
doi: 10.1002/humu.22450
Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18:696–704.
pubmed: 26633542
doi: 10.1038/gim.2015.148
Boonsawat P, Joset P, Steindl K, Oneda B, Gogoll L, Azzarello-Burri S, et al. Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet Med. 2019;21:2043–58.
pubmed: 30842647
pmcid: 6752480
doi: 10.1038/s41436-019-0464-7
Lessel D, Gehbauer C, Bramswig NC, Schluth-Bolard C, Venkataramanappa S, van Gassen KLI, et al. BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells. Brain. 2018;141:2299–311.
pubmed: 29985992
pmcid: 6061686
doi: 10.1093/brain/awy173
Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47:435–44.
pubmed: 25807286
doi: 10.1038/ng.3247
Weiss K, Terhal PA, Cohen L, Bruccoleri M, Irving M, Martinez AF, et al. De novo mutations in CHD4, an ATP-dependent chromatin remodeler gene, cause an intellectual disability syndrome with distinctive dysmorphisms. Am J Hum Genet. 2016;99:934–41.
pubmed: 27616479
pmcid: 5065651
doi: 10.1016/j.ajhg.2016.08.001
Takata A, Xu B, Ionita-Laza I, Roos JL, Gogos JA, Karayiorgou M. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron. 2014;82:773–80.
pubmed: 24853937
pmcid: 4387883
doi: 10.1016/j.neuron.2014.04.043
Guipponi MS, Santoni FA, Setola V, Gehrig C, Rotharmel M. Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes. PLoS ONE. 2014;9:e112745.
pubmed: 25420024
pmcid: 4242613
doi: 10.1371/journal.pone.0112745
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
pubmed: 22930834
pmcid: 5554542
doi: 10.1038/nmeth.2089
Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2012;2:991–1001.
pubmed: 23063364
pmcid: 3515021
doi: 10.1016/j.celrep.2012.09.011
Jones SG, Nixon KCJ, Chubak MC, Kramer JM. Mushroom body specific transcriptome analysis reveals dynamic regulation of learning and memory genes after acquisition of long-term courtship memory in Drosophila. G3. 2018;8:3433–46.
pubmed: 30158319
pmcid: 6222587
doi: 10.1534/g3.118.200560
Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, et al. The transgenic RNAi Project at Harvard Medical School: resources and validation. Genetics. 2015;201:843–52.
pubmed: 26320097
pmcid: 4649654
doi: 10.1534/genetics.115.180208
Siegel RW, Hall JC. Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc Natl Acad Sci USA. 1979;76:3430–4.
pubmed: 16592682
pmcid: 383839
doi: 10.1073/pnas.76.7.3430
Koemans TS, Kleefstra T, Chubak MC, Stone MH, Reijnders MRF, de Munnik S, et al. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet. 2017;13:e1006864.
pubmed: 29069077
pmcid: 5656305
doi: 10.1371/journal.pgen.1006864
Koemans TS, Oppitz C, Donders RAT, van Bokhoven H, Schenck A, Keleman K, et al. Drosophila courtship conditioning as a measure of learning and memory. J Vis Exp. 2017;124.
Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. Correlates of sleep and waking in Drosophila melanogaster. Science. 2000;287:1834–7.
pubmed: 10710313
doi: 10.1126/science.287.5459.1834
Huber R, Hill SL, Holladay C, Biesiadecki M, Tononi G, Cirelli C. Sleep homeostasis in Drosophila melanogaster. Sleep. 2004;27:628–39.
pubmed: 15282997
doi: 10.1093/sleep/27.4.628
Gilestro GF, Cirelli C. pySolo: a complete suite for sleep analysis in Drosophila. Bioinformatics. 2009;25:1466–7.
pubmed: 19369499
pmcid: 2732309
doi: 10.1093/bioinformatics/btp237
Bock I, Nemeth K, Pentelenyi K, Balicza P, Balazs A, Molnar MJ, et al. Targeted next generation sequencing of a panel of autism-related genes identifies an EHMT1 mutation in a Kleefstra syndrome patient with autism and normal intellectual performance. Gene. 2016;595:131–41.
pubmed: 27651234
doi: 10.1016/j.gene.2016.09.027
Wiel L, Venselaar H, Veltman JA, Vriend G, Gilissen C. Aggregation of population-based genetic variation over protein domain homologues and its potential use in genetic diagnostics. Hum Mutat. 2017;38:1454–63.
pubmed: 28815929
pmcid: 5656839
doi: 10.1002/humu.23313
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94.
pubmed: 30371827
doi: 10.1093/nar/gky1016
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–7.
pubmed: 22689647
pmcid: 3394338
doi: 10.1093/nar/gks539
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.
pubmed: 20354512
pmcid: 2855889
doi: 10.1038/nmeth0410-248
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.
pubmed: 27535533
pmcid: 5018207
doi: 10.1038/nature19057
Hiraide T, Nakashima M, Yamoto K, Fukuda T, Kato M, Ikeda H, et al. De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. Hum Genet. 2018;137:95–104.
pubmed: 29322246
doi: 10.1007/s00439-017-1863-y
Blobel GA, Kadauke S, Wang E, Lau AW, Zuber J, Chou MM, et al. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol Cell. 2009;36:970–83.
pubmed: 20064463
pmcid: 2818742
doi: 10.1016/j.molcel.2009.12.001
Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK, et al. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell. 2012;150:922–33.
pubmed: 22921915
pmcid: 3432699
doi: 10.1016/j.cell.2012.06.046
Hallson G, Hollebakken RE, Li T, Syrzycka M, Kim I, Cotsworth S, et al. dSet1 is the main H3K4 di- and tri-methyltransferase throughout Drosophila development. Genetics. 2012;190:91–100.
pubmed: 22048023
pmcid: 3249358
doi: 10.1534/genetics.111.135863
Brand AH, Manoukian AS, Perrimon N. Ectopic expression in Drosophila. Methods Cell Biol. 1994;44:635–54.
pubmed: 7707973
doi: 10.1016/S0091-679X(08)60936-X
Chubak MC, Nixon KCJ, Stone MH, Raun N, Rice SL, Sarikahya M, et al. Individual components of the SWI/SNF chromatin remodelling complex have distinct roles in memory neurons of the Drosophila mushroom body. Dis Model Mech. 2019;12:dmm037325. pii.
pubmed: 30923190
pmcid: 6451433
doi: 10.1242/dmm.037325
Driver DI, Gogtay N, Rapoport JL. Childhood onset schizophrenia and early onset schizophrenia spectrum disorders. Child Adolesc Psychiatr Clin N Am. 2013;22:539–55.
pubmed: 24012072
pmcid: 3771646
doi: 10.1016/j.chc.2013.04.001
Rajji TK, Ismail Z, Mulsant BH. Age at onset and cognition in schizophrenia: meta-analysis. Br J Psychiatry. 2009;195:286–93.
pubmed: 19794194
doi: 10.1192/bjp.bp.108.060723
Kerimoglu C, Sakib MS, Jain G, Benito E, Burkhardt S, Capece V, et al. KMT2A and KMT2B mediate memory function by affecting distinct genomic regions. Cell Rep. 2017;20:538–48.
pubmed: 28723559
doi: 10.1016/j.celrep.2017.06.072
Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.
pubmed: 20711175
pmcid: 2930028
doi: 10.1038/ng.646
Faundes V, Newman WG, Bernardini L, Canham N, Clayton-Smith J, Dallapiccola B, et al. Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am J Hum Genet. 2018;102:175–87.
pubmed: 29276005
doi: 10.1016/j.ajhg.2017.11.013
McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry. 2014;19:652–8.
pubmed: 24776741
pmcid: 4031262
doi: 10.1038/mp.2014.29
Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67.
pubmed: 19339519
pmcid: 2685110
doi: 10.1093/nar/gkp215
Varga E, Nemes C, Tancos Z, Bock I, Berzsenyi S, Levay G, et al. Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance. Stem Cell Res. 2016;17:531–3.
pubmed: 27789404
doi: 10.1016/j.scr.2016.09.031
Goriely A, McGrath JJ, Hultman CM, Wilkie AO, Malaspina D. “Selfish spermatogonial selection”: a novel mechanism for the association between advanced paternal age and neurodevelopmental disorders. Am J Psychiatry. 2013;170:599–608.
pubmed: 23639989
pmcid: 4001324
doi: 10.1176/appi.ajp.2013.12101352
Goriely A, Wilkie AO. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet. 2012;90:175–200.
pubmed: 22325359
pmcid: 3276674
doi: 10.1016/j.ajhg.2011.12.017
Kim S, Kaang BK. Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med. 2017;49:e281.
pubmed: 28082740
pmcid: 5291841
doi: 10.1038/emm.2016.140
Mukai J, Cannavo E, Crabtree GW, Sun Z, Diamantopoulou A, Thakur P et al. Recapitulation and reversal of schizophrenia-related phenotypes in setd1a-deficient mice. Neuron. 2019;104:1–17.
doi: 10.1016/j.neuron.2019.09.014
Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, et al. Histone methylation regulates memory formation. J Neurosci. 2010;30:3589–99.
pubmed: 20219993
pmcid: 2859898
doi: 10.1523/JNEUROSCI.3732-09.2010
Kerimoglu C, Agis-Balboa RC, Kranz A, Stilling R, Bahari-Javan S, Benito-Garagorri E, et al. Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J Neurosci. 2013;33:3452–64.
pubmed: 23426673
pmcid: 6619533
doi: 10.1523/JNEUROSCI.3356-12.2013
Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 2009;37:D211–5.
pubmed: 18940856
doi: 10.1093/nar/gkn785