UV-Casting on Methacrylated PCL for the Production of a Peripheral Nerve Implant Containing an Array of Porous Aligned Microchannels.

Schwann cells biopolymer microchannels neuronal cells peripheral nerve polycaprolactone porosity scaffold

Journal

Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357

Informations de publication

Date de publication:
22 Apr 2020
Historique:
received: 03 03 2020
revised: 14 04 2020
accepted: 17 04 2020
entrez: 26 4 2020
pubmed: 26 4 2020
medline: 26 4 2020
Statut: epublish

Résumé

Peripheral nerves are basic communication structures guiding motor and sensory information from the central nervous system to receptor units. Severed peripheral nerve injuries represent a large clinical problem with relevant challenges to successful synthetic nerve repair scaffolds as substitutes to autologous nerve grafting. Numerous studies reported the use of hollow tubes made of synthetic polymers sutured between severed nerve stumps to promote nerve regeneration while providing protection for external factors, such as scar tissue formation and inflammation. Few approaches have described the potential use of a lumen structure comprised of microchannels or microfibers to provide axon growth avoiding misdirection and fostering proper healing. Here, we report the use of a 3D porous microchannel-based structure made of a photocurable methacrylated polycaprolactone, whose mechanical properties are comparable to native nerves. The neuro-regenerative properties of the polymer were assessed in vitro, prior to the implantation of the 3D porous structure, in a 6-mm rat sciatic nerve gap injury. The manufactured implants were biocompatible and able to be resorbed by the host's body at a suitable rate, allowing the complete healing of the nerve. The innovative design of the highly porous structure with the axon guiding microchannels, along with the observation of myelinated axons and Schwann cells in the in vivo tests, led to a significant progress towards the standardized use of synthetic 3D multichannel-based structures in peripheral nerve surgery.

Identifiants

pubmed: 32331241
pii: polym12040971
doi: 10.3390/polym12040971
pmc: PMC7240584
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : EU-FP7-604450
ID : 604450

Références

Prog Neurobiol. 2015 Aug;131:87-104
pubmed: 26093353
Biomaterials. 2012 Sep;33(25):5901-13
pubmed: 22656449
Front Cell Neurosci. 2019 Jun 28;13:288
pubmed: 31316355
Acta Neurochir (Wien). 2018 Aug;160(8):1587-1589
pubmed: 29796713
Adv Healthc Mater. 2016 Nov;5(21):2732-2744
pubmed: 27600578
Acta Biomater. 2020 Apr 1;106:54-69
pubmed: 32044456
Biotechnol J. 2018 Jul;13(7):e1700635
pubmed: 29396994
Neurotherapeutics. 2016 Apr;13(2):295-310
pubmed: 26754579
Ann Thorac Surg. 2016 Sep;102(3):720-727
pubmed: 27154152
Tissue Eng Part B Rev. 2012 Apr;18(2):116-28
pubmed: 22010760
Nat Protoc. 2012 Nov;7(11):1996-2004
pubmed: 23060244
Polymers (Basel). 2019 Dec 24;12(1):
pubmed: 31878300
Biomaterials. 2015 Feb;41:151-65
pubmed: 25522974
Arq Neuropsiquiatr. 2013 Oct;71(10):811-4
pubmed: 24212521
J Surg Res. 2003 Oct;114(2):133-9
pubmed: 14559438
J Mech Behav Biomed Mater. 2016 Feb;54:159-72
pubmed: 26458114
Biomed Mater. 2018 Apr 25;13(4):044104
pubmed: 29411711
Biomaterials. 2004 Mar-Apr;25(7-8):1269-78
pubmed: 14643601
Glia. 2011 May;59(5):734-49
pubmed: 21351157
Acta Biomater. 2009 Sep;5(7):2540-50
pubmed: 19369123
Acta Biomater. 2018 Mar 1;68:223-236
pubmed: 29274478
Biomaterials. 2014 Apr;35(13):4035-4045
pubmed: 24559639
J Neurol Sci. 2019 Jan 15;396:18-24
pubmed: 30391821
Anat Rec. 1986 May;215(1):71-81
pubmed: 3706794
J Neurosci Methods. 2007 Sep 30;165(2):257-64
pubmed: 17644184
J Mech Behav Biomed Mater. 2019 Mar;91:247-254
pubmed: 30597378
J Biomed Mater Res A. 2014 Oct;102(10):3649-65
pubmed: 24265203

Auteurs

Ruth Diez-Ahedo (R)

Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain.

Xabier Mendibil (X)

Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain.

Mari Carmen Márquez-Posadas (MC)

Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain.

Iban Quintana (I)

Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain.

Francisco González (F)

Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca. la Peraleda s/n, 45071 Toledo, Spain.

Francisco Javier Rodríguez (FJ)

Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca. la Peraleda s/n, 45071 Toledo, Spain.

Leyla Zilic (L)

Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK.

Colin Sherborne (C)

Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK.

Adam Glen (A)

Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK.

Caroline S Taylor (CS)

Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK.

Frederik Claeyssens (F)

Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK.

John W Haycock (JW)

Department of Materials Science & Engineering, University of Sheffield, Sheffield S3 7HQ, UK.

Wandert Schaafsma (W)

Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain.

Eva González (E)

Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain.

Begoña Castro (B)

Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain.

Santos Merino (S)

Tekniker, C/Iñaki Goenaga 5, 20600 Eibar, Spain.

Classifications MeSH