Mechanisms and therapeutic implications of hypermutation in gliomas.
Animals
Antineoplastic Agents, Alkylating
/ pharmacology
Brain Neoplasms
/ genetics
DNA Mismatch Repair
/ genetics
Gene Frequency
Genome, Human
/ drug effects
Glioma
/ genetics
Humans
Male
Mice
Microsatellite Repeats
/ drug effects
Mutagenesis
/ drug effects
Mutation
/ drug effects
Phenotype
Prognosis
Programmed Cell Death 1 Receptor
/ antagonists & inhibitors
Sequence Analysis, DNA
Temozolomide
/ pharmacology
Xenograft Model Antitumor Assays
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
22
07
2019
accepted:
04
03
2020
entrez:
24
4
2020
pubmed:
24
4
2020
medline:
6
6
2020
Statut:
ppublish
Résumé
A high tumour mutational burden (hypermutation) is observed in some gliomas
Identifiants
pubmed: 32322066
doi: 10.1038/s41586-020-2209-9
pii: 10.1038/s41586-020-2209-9
pmc: PMC8235024
mid: NIHMS1572083
doi:
Substances chimiques
Antineoplastic Agents, Alkylating
0
PDCD1 protein, human
0
Programmed Cell Death 1 Receptor
0
Temozolomide
YF1K15M17Y
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
517-523Subventions
Organisme : NCI NIH HHS
ID : R01 CA188228
Pays : United States
Organisme : NCI NIH HHS
ID : K99 CA201592
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS091620
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA095616
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA142536
Pays : United States
Organisme : NHGRI NIH HHS
ID : T32 HG002295
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA215489
Pays : United States
Organisme : NCI NIH HHS
ID : R00 CA201592
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA165962
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS110942
Pays : United States
Organisme : NCI NIH HHS
ID : UG1 CA233331
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA163205
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA219943
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Hunter, C. et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 66, 3987–3991 (2006).
pubmed: 16618716
doi: 10.1158/0008-5472.CAN-06-0127
pmcid: 7212022
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).
doi: 10.1038/nature07385
Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014).
pubmed: 24336570
doi: 10.1126/science.1239947
Wang, J. et al. Clonal evolution of glioblastoma under therapy. Nat. Genet. 48, 768–776 (2016).
pubmed: 27270107
pmcid: 5627776
doi: 10.1038/ng.3590
Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112–120 (2019).
pubmed: 31748746
doi: 10.1038/s41586-019-1775-1
pmcid: 6897368
Bouffet, E. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34, 2206–2211 (2016).
pubmed: 27001570
doi: 10.1200/JCO.2016.66.6552
Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).
pubmed: 25765070
pmcid: 4993154
doi: 10.1126/science.aaa1348
Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).
pubmed: 26028255
pmcid: 4481136
doi: 10.1056/NEJMoa1500596
McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).
pubmed: 26940869
pmcid: 4984254
doi: 10.1126/science.aaf1490
Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).
pubmed: 24120142
pmcid: 3910500
doi: 10.1016/j.cell.2013.09.034
Brat, D. J. et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481–2498 (2015).
pubmed: 26061751
doi: 10.1056/NEJMoa1402121
Louis, D. N. et al. World Health Organization Histological Classification of Tumours of the Central Nervous System (ed. 2) (International Agency for Research on Cancer, 2016).
Cahill, D. P. et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin. Cancer Res. 13, 2038–2045 (2007).
pubmed: 17404084
pmcid: 2873832
doi: 10.1158/1078-0432.CCR-06-2149
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592
pmcid: 3776390
doi: 10.1038/nature12477
Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31, 1023–1031 (2013).
pubmed: 24142049
pmcid: 5710001
doi: 10.1038/nbt.2696
Sholl, L. M. et al. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight 1, e87062 (2016).
pubmed: 27882345
pmcid: 5111542
doi: 10.1172/jci.insight.87062
Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).
pubmed: 28481359
pmcid: 5461196
doi: 10.1038/nm.4333
Campbell, B. B. et al. Comprehensive analysis of hypermutation in human cancer. Cell 171, 1042–1056.e10 (2017).
pubmed: 29056344
pmcid: 5849393
doi: 10.1016/j.cell.2017.09.048
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).
pubmed: 15758009
doi: 10.1056/NEJMoa043330
van den Bent, M. J. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J. Clin. Oncol. 31, 344–350 (2013).
pubmed: 23071237
doi: 10.1200/JCO.2012.43.2229
Kim, J. et al. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat. Genet. 48, 600–606 (2016).
pubmed: 27111033
pmcid: 4936490
doi: 10.1038/ng.3557
Berends, M. J. et al. Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am. J. Hum. Genet. 70, 26–37 (2002).
pubmed: 11709755
doi: 10.1086/337944
Yang, G. et al. Dominant effects of an Msh6 missense mutation on DNA repair and cancer susceptibility. Cancer Cell 6, 139–150 (2004).
pubmed: 15324697
doi: 10.1016/j.ccr.2004.06.024
Ollier, E. et al. Analysis of temozolomide resistance in low-grade gliomas using a mechanistic mathematical model. Fundam. Clin. Pharmacol. 31, 347–358 (2017).
pubmed: 27933657
doi: 10.1111/fcp.12259
Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).
pubmed: 31682550
doi: 10.1200/JCO.19.02105
Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017).
pubmed: 29186113
doi: 10.1038/nature24673
Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364, 485–491 (2019).
pubmed: 31048490
pmcid: 6685207
doi: 10.1126/science.aau0447
Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019).
pubmed: 30894752
pmcid: 6954100
doi: 10.1038/s41586-019-1032-7
Gejman, R. S. et al. Rejection of immunogenic tumor clones is limited by clonal fraction. eLife 7, e41090 (2018).
pubmed: 30499773
pmcid: 6269121
doi: 10.7554/eLife.41090
Gylling, A. H. et al. Differential cancer predisposition in Lynch syndrome: insights from molecular analysis of brain and urinary tract tumors. Carcinogenesis 29, 1351–1359 (2008).
pubmed: 18550572
doi: 10.1093/carcin/bgn133
Herrlinger, U. et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet 393, 678–688 (2019).
pubmed: 30782343
doi: 10.1016/S0140-6736(18)31791-4
Jonsson, P. et al. Genomic correlates of disease progression and treatment response in prospectively characterized gliomas. Clin. Cancer Res. 25, 5537–5547 (2019).
pubmed: 31263031
pmcid: 6753053
doi: 10.1158/1078-0432.CCR-19-0032
Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).
pubmed: 28420421
pmcid: 5395719
doi: 10.1186/s13073-017-0424-2
Consortium, A. P. G.; AACR Project GENIE Consortium. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).
doi: 10.1158/2159-8290.CD-17-0151
Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
pmcid: 3919969
doi: 10.1038/ng.2764
Garcia, E. P. et al. Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch. Pathol. Lab. Med. 141, 751–758 (2017).
pubmed: 28557599
doi: 10.5858/arpa.2016-0527-OA
Ramkissoon, S. H. et al. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro-oncol. 19, 986–996 (2017).
pubmed: 28104717
pmcid: 5570190
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013
pmcid: 3833702
doi: 10.1038/nbt.2514
Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015).
pubmed: 25703262
doi: 10.1002/humu.22771
pmcid: 7350419
Bi, W. L. et al. Clinical identification of oncogenic drivers and copy-number alterations in pituitary tumors. Endocrinology 158, 2284–2291 (2016).
doi: 10.1210/en.2016-1967
Abo, R. P. et al. BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers. Nucleic Acids Res. 43, e19 (2015).
pubmed: 25428359
doi: 10.1093/nar/gku1211
Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).
pubmed: 30371878
doi: 10.1093/nar/gky1015
Karczewski, K. J. et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. Preprint at https://www.biorxiv.org/content/10.1101/531210v2 (2019).
Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).
pubmed: 29165669
doi: 10.1093/nar/gkx1153
Sun, J. X. et al. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLOS Comput. Biol. 14, e1005965 (2018).
pubmed: 29415044
pmcid: 5832436
doi: 10.1371/journal.pcbi.1005965
Garofalo, A. et al. The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med. 8, 79 (2016).
pubmed: 27460824
pmcid: 4962446
doi: 10.1186/s13073-016-0333-9
Trabucco, S. E. et al. A novel next-generation sequencing approach to detecting microsatellite instability and pan-tumor characterization of 1000 microsatellite instability-high cases in 67,000 patient samples. J. Mol. Diagn. 21, 1053–1066 (2019).
pubmed: 31445211
doi: 10.1016/j.jmoldx.2019.06.011
pmcid: 7807551
Papke, D. J. Jr et al. Validation of a targeted next-generation sequencing approach to detect mismatch repair deficiency in colorectal adenocarcinoma. Mod. Pathol. 31, 1882–1890 (2018).
pubmed: 29955144
doi: 10.1038/s41379-018-0091-x
Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2016).
pubmed: 26656846
doi: 10.1038/ng.3469
Gehring, J. S., Fischer, B., Lawrence, M. & Huber, W. SomaticSignatures: inferring mutational signatures from single-nucleotide variants. Bioinformatics 31, 3673–3675 (2015).
pubmed: 26163694
pmcid: 4817139
Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31 (2016).
pubmed: 26899170
pmcid: 4762164
doi: 10.1186/s13059-016-0893-4
Ellrott, K. et al. Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst. 6, 271–281.e277 (2018).
pubmed: 29596782
pmcid: 6075717
doi: 10.1016/j.cels.2018.03.002
Francis, J. M. et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov. 4, 956–971 (2014).
pubmed: 24893890
pmcid: 4125473
doi: 10.1158/2159-8290.CD-13-0879
Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018).
pubmed: 29217584
doi: 10.1126/science.aao4426
Bohrson, C. L. et al. Linked-read analysis identifies mutations in single-cell DNA-sequencing data. Nat. Genet. 51, 749–754 (2019).
pubmed: 30886424
pmcid: 6900933
doi: 10.1038/s41588-019-0366-2
Cortes-Ciriano, I., Lee, S., Park, W. Y., Kim, T. M. & Park, P. J. A molecular portrait of microsatellite instability across multiple cancers. Nat. Commun. 8, 15180 (2017).
pubmed: 28585546
pmcid: 5467167
doi: 10.1038/ncomms15180
Cibulskis, K. et al. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27, 2601–2602 (2011).
pubmed: 21803805
pmcid: 3167057
doi: 10.1093/bioinformatics/btr446
Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012).
doi: 10.1093/bioinformatics/bts271
pubmed: 22581179
Costello, M. et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 41, e67 (2013).
pubmed: 23303777
pmcid: 3616734
doi: 10.1093/nar/gks1443
Taylor-Weiner, A. et al. DeTiN: overcoming tumor-in-normal contamination. Nat. Methods 15, 531–534 (2018).
pubmed: 29941871
pmcid: 6528031
doi: 10.1038/s41592-018-0036-9
Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).
pubmed: 23415222
pmcid: 3575604
doi: 10.1016/j.cell.2013.01.019
Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).
pubmed: 24390350
pmcid: 4048962
doi: 10.1038/nature12912
Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).
pubmed: 22544022
pmcid: 4383288
doi: 10.1038/nbt.2203
McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795
pmcid: 4893825
doi: 10.1186/s13059-016-0974-4