A synchronized VUV light source based on high-order harmonic generation at FLASH.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 Apr 2020
22 Apr 2020
Historique:
received:
12
12
2019
accepted:
12
03
2020
entrez:
24
4
2020
pubmed:
24
4
2020
medline:
24
4
2020
Statut:
epublish
Résumé
Ultrafast measurements in the extreme ultraviolet (XUV) spectral region targeting femtosecond timescales rely until today on two complementary XUV laser sources: free electron lasers (FELs) and high-harmonic generation (HHG) based sources. The combination of these two source types was until recently not realized. The complementary properties of both sources including broad bandwidth, high pulse energy, narrowband tunability and femtosecond timing, open new opportunities for two-color pump-probe studies. Here we show first results from the commissioning of a high-harmonic beamline that is fully synchronized with the free-electron laser FLASH, installed at beamline FL26 with permanent end-station including a reaction microscope (REMI). An optical parametric amplifier synchronized with the FEL burst mode drives the HHG process. First commissioning tests including electron momentum measurements using REMI, demonstrate long-term stability of the HHG source over more than 14 hours. This realization of the combination of these light sources will open new opportunities for time-resolved studies targeting different science cases including core-level ionization dynamics or the electron dynamics during the transformation of a molecule within a chemical reaction probed on femtosecond timescales in the ultraviolet to soft X-ray spectral region.
Identifiants
pubmed: 32322051
doi: 10.1038/s41598-020-63019-2
pii: 10.1038/s41598-020-63019-2
pmc: PMC7176647
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6867Références
Ackermann, W. A. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature photonics 1, 336 (2007).
doi: 10.1038/nphoton.2007.76
Faatz, B. et al. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator. New Journal of Physics 18, 062002 (2016).
doi: 10.1088/1367-2630/18/6/062002
Seddon, E. et al. Short-wavelength free-electron laser sources and science: a review. Reports on Progress in Physics 80, 115901 (2017).
doi: 10.1088/1361-6633/aa7cca
Decking, W. et al. Status of the european xfel. 10th Int. Particle Accelerator Conf 17, 10–16 (2019).
Milne, C. et al. Swissfel: the swiss x-ray free electron laser. Applied Sciences 7, 720 (2017).
doi: 10.3390/app7070720
Ko, I. et al. Construction and commissioning of pal-xfel facility. Applied Sciences 7, 479 (2017).
doi: 10.3390/app7050479
McNeil, B. First light from hard x-ray laser. Nature Photonics 3, 375–377 (2009).
doi: 10.1038/nphoton.2009.110
Ishikawa, T. et al. A compact x-ray free-electron laser emitting in the sub-ångström region. nature photonics 6, 540–544 (2012).
doi: 10.1038/nphoton.2012.141
Huang, Z. et al. Brightness and coherence of synchrotron radiation and fels. Tech. Rep., SLAC National Accelerator Lab., Menlo Park, CA (United States) (2013).
Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast x-ray spectroscopic revolution in chemical dynamics. Nature Reviews Chemistry 2, 82–94 (2018).
doi: 10.1038/s41570-018-0008-8
Buzzi, M., Först, M., Mankowsky, R. & Cavalleri, A. Probing dynamics in quantum materials with femtosecond x-rays. Nature Reviews Materials 3, 299 (2018).
doi: 10.1038/s41578-018-0024-9
Ivanov, R., Liu, J., Brenner, G., Brachmanski, M. & Düsterer, S. Flash free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking. Journal of synchrotron radiation 25, 26–31 (2018).
doi: 10.1107/S160057751701253X
Savelyev, E. et al. Jitter-correction for ir/uv-xuv pump-probe experiments at the flash free-electron laser. New Journal of Physics 19, 043009 (2017).
doi: 10.1088/1367-2630/aa652d
Danailov, M. B. et al. Towards jitter-free pump-probe measurements at seeded free electron laser facilities. Optics express 22, 12869–12879 (2014).
doi: 10.1364/OE.22.012869
Glownia, J. M. et al. Time-resolved pump-probe experiments at the lcls. Optics express 18, 17620–17630 (2010).
doi: 10.1364/OE.18.017620
Azima, A. et al. Time-resolved pump-probe experiments beyond the jitter limitations at flash. Applied Physics Letters 94, 144102 (2009).
doi: 10.1063/1.3111789
Redlin, H. et al. The flash pum-probe laser system: Setup, characterization and optical beamlines. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 635, S88–S93, PhotonDiag 2010 (2011).
Minitti, M. P. et al. Optical laser systems at the Linac Coherent Light Source. Journal of Synchrotron Radiation 22, 526–531 (2015).
doi: 10.1107/S1600577515006244
Lang, T. et al. Versatile opcpa pump-probe laser system for the flash2 xuv fel beamline at desy. In 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC), 1–1 (2019).
Pergament, M. et al. Versatile optical laser system for experiments at the european x-ray free-electron laser facility. Optics express 24, 29349–29359 (2016).
doi: 10.1364/OE.24.029349
McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).
doi: 10.1364/JOSAB.4.000595
Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. Journal of Physics B: Atomic, Molecular and Optical Physics 21, L31–L35 (1988).
doi: 10.1088/0953-4075/21/3/001
Heyl, C. M., Arnold, C. L., Couairon, A. & L’Huillier, A. Introduction to macroscopic power scaling principles for high-order harmonic generation. Journal of Physics B: Atomic, Molecular and Optical Physics 50, 013001 (2016).
doi: 10.1088/1361-6455/50/1/013001
Schmid, G. et al. Reaction microscope endstation at FLASH2. Journal of Synchrotron Radiation 26, 854–867 (2019).
doi: 10.1107/S1600577519002236
Moshammer, R., Unverzagt, M., Schmitt, W., Ullrich, J. & Schmidt-Böcking, H. A 4π recoil-ion electron momentum analyzer: a high-resolution “microscope” for the investigation of the dynamics of atomic, molecular and nuclear reactions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 108, 425–445 (1996).
doi: 10.1016/0168-583X(95)01259-1
Schulz, S. et al. Femtosecond all-optical synchronization of an x-ray free-electron laser. Nature communications 6, 5938 (2015).
doi: 10.1038/ncomms6938
Schirmel, N. et al. Long-term stabilization of temporal and spectral drifts of a burst-mode opcpa system. In Conference on Lasers and Electro-Optics, STu4E.4, https://doi.org/10.1364/CLEO_SI.2019.STu4E.4 (Optical Society of America, 2019).
Henke, B., Gullikson, E. & Davis, J. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at e = 50-30,000 ev, z = 1-92. Atomic Data and Nuclear Data Tables; (United States) 54 (1993).
Goh, S. et al. Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum uv to soft x-ray range. Opt. Express 23, 4421–4434 (2015).
doi: 10.1364/OE.23.004421
Steingrube, D. S., Vockerodt, T., Schulz, E., Morgner, U. & Kovačev, M. Phase matching of high-order harmonics in a semi-infinite gas cell. Phys. Rev. A 80, 043819 (2009).
doi: 10.1103/PhysRevA.80.043819
Kretschmar, M. et al. Spatial contributions of electron trajectories to high-order-harmonic radiation originating from a semi-infinite gas cell. Phys. Rev. A 88, 013805 (2013).
doi: 10.1103/PhysRevA.88.013805
Kurka, M. et al. Two-photon double ionization of ne by free-electron laser radiation: a kinematically complete experiment. Journal of Physics B: Atomic, Molecular and Optical Physics 42, 141002 (2009).
doi: 10.1088/0953-4075/42/14/141002
Falcão-Filho, E. L. et al. Scaling of high-order harmonic efficiencies with visible wavelength drivers: A route to efficient extreme ultraviolet sources. Applied Physics Letters 97, 061107 (2010).
doi: 10.1063/1.3475772
Hatayama, M. et al. Wide-range narrowband multilayer mirror for selecting a single-order harmonic in the photon energy range of 40-70 ev. Opt. Express 24, 14546–14551 (2016).
doi: 10.1364/OE.24.014546
Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).
doi: 10.1126/science.aad5081
Barends, T. R. et al. Direct observation of ultrafast collective motions in co myoglobin upon ligand dissociation. Science 350, 445–450 (2015).
doi: 10.1126/science.aac5492
Clark, J. N. et al. Imaging transient melting of a nanocrystal using an x-ray laser. Proceedings of the National Academy of Sciences 112, 7444–7448 (2015).
doi: 10.1073/pnas.1417678112
Radcliffe, P. et al. Single-shot characterization of independent femtosecond extreme ultraviolet free electron and infrared laser pulses. Applied physics letters 90, 131108 (2007).
doi: 10.1063/1.2716360
Amini, K. et al. Alignment, orientation, and coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (pimms) camera. The Journal of chemical physics 147, 013933 (2017).
doi: 10.1063/1.4982220
Schmid, G. et al. Tracing charge transfer in argon dimers by xuv-pump ir-probe experiments at flash. The Journal of chemical physics 151, 084314 (2019).
doi: 10.1063/1.5116234
Williams, G. O. et al. Tracking the ultrafast xuv optical properties of x-ray free-electron-laser heated matter with high-order harmonics. Physical Review A 97, 023414 (2018).
doi: 10.1103/PhysRevA.97.023414
Alain Bertrand, R. P. & Giorgio, P. Atomic calculation of photoionization cross-sections and asymmetry parameters. https://vuo.elettra.eu/services/elements/WebElements.html . Accessed: 2019-12-04 (2016).