Serine catabolism produces ROS, sensitizes cells to actin dysfunction, and suppresses cell growth in fission yeast.
Journal
The Journal of antibiotics
ISSN: 1881-1469
Titre abrégé: J Antibiot (Tokyo)
Pays: England
ID NLM: 0151115
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
13
02
2020
accepted:
23
03
2020
revised:
12
03
2020
pubmed:
22
4
2020
medline:
29
12
2020
entrez:
22
4
2020
Statut:
ppublish
Résumé
Serine is an essential component in organisms as a building block of biomolecules, a precursor of metabolites, an allosteric regulator of an enzyme, etc. This amino acid is thought to be a key metabolite in human diseases including cancers and infectious diseases. To understand the consequence of serine catabolism, we screened natural products to identify a fungal metabolite chaetoglobosin D (ChD) as a specific inhibitor of fission yeast cell growth when cultivated with serine as a sole nitrogen source. ChD targets actin, and actin mutant cells showed severe growth defect on serine medium. ROS accumulated in cells when cultivated in serine medium, while actin mutant cells showed increased sensitivity to oxidative stress. ROS production is a new aspect of serine metabolism, which might be involved in disease progression, and actin could be the drug target for curing serine-dependent symptoms.
Identifiants
pubmed: 32313168
doi: 10.1038/s41429-020-0305-6
pii: 10.1038/s41429-020-0305-6
doi:
Substances chimiques
Actins
0
Amino Acids
0
Indole Alkaloids
0
Reactive Oxygen Species
0
Serine
452VLY9402
chaetoglobosins
50335-03-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
574-580Références
Yeung KS, Paterson I. Actin-binding marine macrolides: total synthesis and biological importance. Angew Chem Int Ed. 2002;41:4632–53.
doi: 10.1002/anie.200290057
Kita M, Kigoshi H. Marine natural products that interfere with multiple cytoskeletal protein interactions. Nat Prod Rep. 2015;32:534–42.
doi: 10.1039/C4NP00129J
Allingham JS, Klenchin VA, Rayment I. Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci. 2006;63:2119–34.
doi: 10.1007/s00018-006-6157-9
Scherlach K, Boettger D, Remme N, Hertweck C. The chemistry and biology of cytochalasans. Nat Prod Rep. 2010;27:869–86.
doi: 10.1039/b903913a
de Koning TJ, et al. L-serine in disease and development. Biochem J. 2003;371:653–61.
doi: 10.1042/bj20021785
Maddocks OD, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013;493:542–6.
doi: 10.1038/nature11743
Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13:572–83.
doi: 10.1038/nrc3557
Locasale JW, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 2011;43:869–74.
doi: 10.1038/ng.890
Possemato R, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011;476:346–50.
doi: 10.1038/nature10350
Pollari S, et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat. 2011;125:421–30.
doi: 10.1007/s10549-010-0848-5
Chaneton B, et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 2012;491:458–62.
doi: 10.1038/nature11540
Kitamoto S, et al. Dietary L-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut. Nat Microbiol. 2019:116–25.
Hayles J, Nurse P. A journey into space. Nat Rev Mol Cell Biol. 2001;2:647–56.
doi: 10.1038/35089520
Hercyk BS, Onwubiko UN, Das ME. Coordinating septum formation and the actomyosin ring during cytokinesis in Schizosaccharomyces pombe. Mol Microbiol. 2019;112:1645–57.
doi: 10.1111/mmi.14387
Takahashi H, Sun X, Hamamoto M, Yashiroda Y, Yoshida M. The SAGA histone acetyltransferase complex regulates leucine uptake through the Agp3 permease in fission yeast. J Biol Chem. 2012;287:38158–67.
doi: 10.1074/jbc.M112.411165
Sun X, et al. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast. Sci Rep. 2016;6:20856.
doi: 10.1038/srep20856
Reidman S, Cohen A, Kupiec M, Weisman R. The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast. J Biol Chem. 2019;294:18244–55.
doi: 10.1074/jbc.RA119.010101
Fantes P, Nurse P. Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res. 1977;107:377–86.
doi: 10.1016/0014-4827(77)90359-7
Petersen J, Nurse P. TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat Cell Biol. 2007;9:1263–72.
doi: 10.1038/ncb1646
Ishiguro J, Kobayashi W. An actin point-mutation neighboring the ‘hydrophobic plug’ causes defects in the maintenance of cell polarity and septum organization in the fission yeast Schizosaccharomyces pombe. FEBS Lett. 1996;392:237–41.
doi: 10.1016/0014-5793(96)00819-8
Huang J, et al. Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast. J Cell Biol. 2012;199:831–47.
doi: 10.1083/jcb.201209044
Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795–823.
doi: 10.1016/0076-6879(91)94059-L
Sekita S, Yoshihira K, Natori S. Chetoglobosins, cyto-toxic 10-(indol-3-yl)-[13]cytochalasans from Chaetomium Spp. 4. C-13-nuclear magnetic-resonance spectra and their application to a biosynthetic study. Chem Pharm Bull. 1983;31:490–8.
doi: 10.1248/cpb.31.490
Marchetti MA, Weinberger M, Murakami Y, Burhans WC, Huberman JA. Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J Cell Sci. 2006;119:124–31.
doi: 10.1242/jcs.02703
Sekita S, et al. Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13]cytochalasans from Chaetomium spp. I. Production, isolation and some cytological effects of chaetoglobosins A-J. Chem Pharm Bull. 1982;30:1609–17.
doi: 10.1248/cpb.30.1609
Yahara I, Harada F, Sekita S, Yoshihira K, Natori S. Correlation between effects of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro. J Cell Biol. 1982;92:69–78.
doi: 10.1083/jcb.92.1.69
Maruyama K, et al. Effects of chaetoglobosin J on the G-F transformation of actin. Biochim Biophys Acta. 1986;874:137–43.
doi: 10.1016/0167-4838(86)90110-X
Kashman Y, Groweiss A, Shmueli J. Latrunculin, a New 2-thiazolidinone macrolide from the marine sponge Latrunculia-magnifica. Tetrahedron Lett. 1980;21:3629–32.
doi: 10.1016/0040-4039(80)80255-3
Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR. A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol. 2004;164:803–9.
doi: 10.1083/jcb.200310148
Farah ME, Amberg DC. Conserved actin cysteine residues are oxidative stress sensors that can regulate cell death in yeast. Mol Biol Cell. 2007;18:1359–65.
doi: 10.1091/mbc.e06-08-0718
Leadsham JE, Kotiadis VN, Tarrant DJ, Gourlay CW. Apoptosis and the yeast actin cytoskeleton. Cell Death Differ. 2010;17:754–62.
doi: 10.1038/cdd.2009.196
Kobayashi D, et al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother. 2002;46:3113–7.
doi: 10.1128/AAC.46.10.3113-3117.2002
Avery SV. Molecular targets of oxidative stress. Biochem J. 2011;434:201–10.
doi: 10.1042/BJ20101695
Fujiwara I, Zweifel ME, Courtemanche N, Pollard TD. Latrunculin A accelerates actin filament depolymerization in addition to sequestering actin monomers. Curr Biol 2018;28:3183–92. e2.
doi: 10.1016/j.cub.2018.07.082
Lassing I, et al. Molecular and structural basis for redox regulation of beta-actin. J Mol Biol. 2007;370:331–48.
doi: 10.1016/j.jmb.2007.04.056
Lucas S, Chen G, Aras S, Wang J. Serine catabolism is essential to maintain mitochondrial respiration in mammalian cells. Life Sci Alliance. 2018;1:e201800036.
doi: 10.26508/lsa.201800036