Age-dependent changes in response property and morphology of a thermosensory neuron and thermotaxis behavior in Caenorhabditis elegans.

Caenorhabditis elegans actin aging behavior calcium cilia neural plasticity sensory neuron

Journal

Aging cell
ISSN: 1474-9726
Titre abrégé: Aging Cell
Pays: England
ID NLM: 101130839

Informations de publication

Date de publication:
05 2020
Historique:
received: 07 07 2019
revised: 09 02 2020
accepted: 06 03 2020
pubmed: 21 4 2020
medline: 2 7 2021
entrez: 21 4 2020
Statut: ppublish

Résumé

Age-dependent cognitive and behavioral deterioration may arise from defects in different components of the nervous system, including those of neurons, synapses, glial cells, or a combination of them. We find that AFD, the primary thermosensory neuron of Caenorhabditis elegans, in aged animals is characterized by loss of sensory ending integrity, including reduced actin-based microvilli abundance and aggregation of thermosensory guanylyl cyclases. At the functional level, AFD neurons in aged animals are hypersensitive to high temperatures and show sustained sensory-evoked calcium dynamics, resulting in a prolonged operating range. At the behavioral level, senescent animals display cryophilic behaviors that remain plastic to acute temperature changes. Excessive cyclase activity of the AFD-specific guanylyl cyclase, GCY-8, is associated with developmental defects in AFD sensory ending and cryophilic behavior. Surprisingly, loss of the GCY-8 cyclase domain reduces these age-dependent morphological and behavioral changes, while a prolonged AFD operating range still exists in gcy-8 animals. The lack of apparent correlation between age-dependent changes in the morphology or stimuli-evoked response properties of primary sensory neurons and those in related behaviors highlights the importance of quantitative analyses of aging features when interpreting age-related changes at structural and functional levels. Our work identifies aging hallmarks in AFD receptive ending, temperature-evoked AFD responses, and experience-based thermotaxis behavior, which serve as a foundation to further elucidate the neural basis of cognitive aging.

Identifiants

pubmed: 32307902
doi: 10.1111/acel.13146
pmc: PMC7253067
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13146

Subventions

Organisme : NIH HHS
ID : P40 OD010440
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS105094
Pays : United States
Organisme : NIH HHS
ID : R35NS105094
Pays : United States
Organisme : NIH Office of Research Infrastructure Program
ID : P40OD010440
Pays : International

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Références

Nat Neurosci. 2008 Aug;11(8):908-15
pubmed: 18660808
PLoS Biol. 2010 Aug 10;8(8):e1000450
pubmed: 20711477
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1638-1647
pubmed: 31911469
Nat Commun. 2011 Jun 14;2:355
pubmed: 21673676
Biophys J. 1978 Apr;22(1):15-28
pubmed: 638223
Neuron. 2002 Feb 28;33(5):751-63
pubmed: 11879652
Dev Biol. 1986 Oct;117(2):456-87
pubmed: 2428682
Genetics. 1974 May;77(1):71-94
pubmed: 4366476
Trends Neurosci. 2004 Oct;27(10):607-13
pubmed: 15374672
J Neurosci. 2012 Jun 27;32(26):8778-90
pubmed: 22745480
Curr Biol. 2004 Dec 29;14(24):2245-51
pubmed: 15620651
Nature. 2010 Mar 25;464(7288):504-12
pubmed: 20336132
Aging Cell. 2020 May;19(5):e13146
pubmed: 32307902
Neuron. 1996 Oct;17(4):695-706
pubmed: 8893026
J Neurosci. 2011 Jun 22;31(25):9279-88
pubmed: 21697377
Curr Biol. 2004 Jul 27;14(14):1291-5
pubmed: 15268861
Commun Biol. 2018 Aug 24;1:123
pubmed: 30272003
Neuron. 2016 Apr 20;90(2):235-44
pubmed: 27041501
Cell Metab. 2013 Sep 3;18(3):392-402
pubmed: 24011074
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9274-9
pubmed: 21571636
Dev Cell. 2016 Oct 24;39(2):209-223
pubmed: 27720609
J Comp Neurol. 1977 Apr 1;172(3):489-510
pubmed: 838889
Neuron. 1996 Oct;17(4):707-18
pubmed: 8893027
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8768-73
pubmed: 26124107
Nat Rev Neurosci. 2012 Mar 07;13(4):240-50
pubmed: 22395804
EMBO J. 1991 Dec;10(12):3959-70
pubmed: 1935914
Proc Natl Acad Sci U S A. 1975 Oct;72(10):4061-5
pubmed: 1060088
Neuron. 2018 Jan 17;97(2):356-367.e4
pubmed: 29307713
Neurobiol Aging. 2009 Sep;30(9):1498-503
pubmed: 18255194
Elife. 2014 Mar 25;3:e01948
pubmed: 24668170
Genetics. 2006 Apr;172(4):2239-52
pubmed: 16415369
J Gerontol A Biol Sci Med Sci. 2004 Dec;59(12):1251-60
pubmed: 15699524
J Neurosci. 2006 Jul 12;26(28):7444-51
pubmed: 16837592
J Cell Sci. 2014 Dec 15;127(Pt 24):5317-30
pubmed: 25335890
Cell. 2016 May 5;165(4):936-48
pubmed: 27062922
Cell Rep. 2016 Jan 5;14(1):11-21
pubmed: 26725111
J Neurosci. 2016 Mar 2;36(9):2571-81
pubmed: 26936999
Nature. 2002 Oct 24;419(6909):808-14
pubmed: 12397350
Nat Methods. 2008 Jul;5(7):605-7
pubmed: 18536722
Development. 2001 Nov;128(22):4475-88
pubmed: 11714673
J Neurosci Methods. 2006 Jun 30;154(1-2):45-52
pubmed: 16417923
Nature. 1995 Jul 27;376(6538):344-8
pubmed: 7630402
Brain Res. 1999 Mar 6;821(1):160-8
pubmed: 10064800
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14863-8
pubmed: 20679195
Cell. 2013 Feb 14;152(4):806-17
pubmed: 23415228

Auteurs

Tzu-Ting Huang (TT)

Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan.
Group of Molecular Neurobiology, Graduate School of Science, Nagoya University, Nagoya, Japan.
Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.

Hironori J Matsuyama (HJ)

Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan.
Group of Molecular Neurobiology, Graduate School of Science, Nagoya University, Nagoya, Japan.

Yuki Tsukada (Y)

Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan.
Group of Molecular Neurobiology, Graduate School of Science, Nagoya University, Nagoya, Japan.

Aakanksha Singhvi (A)

Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA.

Ru-Ting Syu (RT)

Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.

Yun Lu (Y)

Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA.

Shai Shaham (S)

Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA.

Ikue Mori (I)

Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan.
Group of Molecular Neurobiology, Graduate School of Science, Nagoya University, Nagoya, Japan.

Chun-Liang Pan (CL)

Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH