Age-dependent changes in response property and morphology of a thermosensory neuron and thermotaxis behavior in Caenorhabditis elegans.
Caenorhabditis
elegans
actin
aging
behavior
calcium
cilia
neural plasticity
sensory neuron
Journal
Aging cell
ISSN: 1474-9726
Titre abrégé: Aging Cell
Pays: England
ID NLM: 101130839
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
07
07
2019
revised:
09
02
2020
accepted:
06
03
2020
pubmed:
21
4
2020
medline:
2
7
2021
entrez:
21
4
2020
Statut:
ppublish
Résumé
Age-dependent cognitive and behavioral deterioration may arise from defects in different components of the nervous system, including those of neurons, synapses, glial cells, or a combination of them. We find that AFD, the primary thermosensory neuron of Caenorhabditis elegans, in aged animals is characterized by loss of sensory ending integrity, including reduced actin-based microvilli abundance and aggregation of thermosensory guanylyl cyclases. At the functional level, AFD neurons in aged animals are hypersensitive to high temperatures and show sustained sensory-evoked calcium dynamics, resulting in a prolonged operating range. At the behavioral level, senescent animals display cryophilic behaviors that remain plastic to acute temperature changes. Excessive cyclase activity of the AFD-specific guanylyl cyclase, GCY-8, is associated with developmental defects in AFD sensory ending and cryophilic behavior. Surprisingly, loss of the GCY-8 cyclase domain reduces these age-dependent morphological and behavioral changes, while a prolonged AFD operating range still exists in gcy-8 animals. The lack of apparent correlation between age-dependent changes in the morphology or stimuli-evoked response properties of primary sensory neurons and those in related behaviors highlights the importance of quantitative analyses of aging features when interpreting age-related changes at structural and functional levels. Our work identifies aging hallmarks in AFD receptive ending, temperature-evoked AFD responses, and experience-based thermotaxis behavior, which serve as a foundation to further elucidate the neural basis of cognitive aging.
Identifiants
pubmed: 32307902
doi: 10.1111/acel.13146
pmc: PMC7253067
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13146Subventions
Organisme : NIH HHS
ID : P40 OD010440
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS105094
Pays : United States
Organisme : NIH HHS
ID : R35NS105094
Pays : United States
Organisme : NIH Office of Research Infrastructure Program
ID : P40OD010440
Pays : International
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Références
Nat Neurosci. 2008 Aug;11(8):908-15
pubmed: 18660808
PLoS Biol. 2010 Aug 10;8(8):e1000450
pubmed: 20711477
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1638-1647
pubmed: 31911469
Nat Commun. 2011 Jun 14;2:355
pubmed: 21673676
Biophys J. 1978 Apr;22(1):15-28
pubmed: 638223
Neuron. 2002 Feb 28;33(5):751-63
pubmed: 11879652
Dev Biol. 1986 Oct;117(2):456-87
pubmed: 2428682
Genetics. 1974 May;77(1):71-94
pubmed: 4366476
Trends Neurosci. 2004 Oct;27(10):607-13
pubmed: 15374672
J Neurosci. 2012 Jun 27;32(26):8778-90
pubmed: 22745480
Curr Biol. 2004 Dec 29;14(24):2245-51
pubmed: 15620651
Nature. 2010 Mar 25;464(7288):504-12
pubmed: 20336132
Aging Cell. 2020 May;19(5):e13146
pubmed: 32307902
Neuron. 1996 Oct;17(4):695-706
pubmed: 8893026
J Neurosci. 2011 Jun 22;31(25):9279-88
pubmed: 21697377
Curr Biol. 2004 Jul 27;14(14):1291-5
pubmed: 15268861
Commun Biol. 2018 Aug 24;1:123
pubmed: 30272003
Neuron. 2016 Apr 20;90(2):235-44
pubmed: 27041501
Cell Metab. 2013 Sep 3;18(3):392-402
pubmed: 24011074
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9274-9
pubmed: 21571636
Dev Cell. 2016 Oct 24;39(2):209-223
pubmed: 27720609
J Comp Neurol. 1977 Apr 1;172(3):489-510
pubmed: 838889
Neuron. 1996 Oct;17(4):707-18
pubmed: 8893027
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8768-73
pubmed: 26124107
Nat Rev Neurosci. 2012 Mar 07;13(4):240-50
pubmed: 22395804
EMBO J. 1991 Dec;10(12):3959-70
pubmed: 1935914
Proc Natl Acad Sci U S A. 1975 Oct;72(10):4061-5
pubmed: 1060088
Neuron. 2018 Jan 17;97(2):356-367.e4
pubmed: 29307713
Neurobiol Aging. 2009 Sep;30(9):1498-503
pubmed: 18255194
Elife. 2014 Mar 25;3:e01948
pubmed: 24668170
Genetics. 2006 Apr;172(4):2239-52
pubmed: 16415369
J Gerontol A Biol Sci Med Sci. 2004 Dec;59(12):1251-60
pubmed: 15699524
J Neurosci. 2006 Jul 12;26(28):7444-51
pubmed: 16837592
J Cell Sci. 2014 Dec 15;127(Pt 24):5317-30
pubmed: 25335890
Cell. 2016 May 5;165(4):936-48
pubmed: 27062922
Cell Rep. 2016 Jan 5;14(1):11-21
pubmed: 26725111
J Neurosci. 2016 Mar 2;36(9):2571-81
pubmed: 26936999
Nature. 2002 Oct 24;419(6909):808-14
pubmed: 12397350
Nat Methods. 2008 Jul;5(7):605-7
pubmed: 18536722
Development. 2001 Nov;128(22):4475-88
pubmed: 11714673
J Neurosci Methods. 2006 Jun 30;154(1-2):45-52
pubmed: 16417923
Nature. 1995 Jul 27;376(6538):344-8
pubmed: 7630402
Brain Res. 1999 Mar 6;821(1):160-8
pubmed: 10064800
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14863-8
pubmed: 20679195
Cell. 2013 Feb 14;152(4):806-17
pubmed: 23415228