A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
Apr 2020
Historique:
received: 14 09 2019
accepted: 13 01 2020
entrez: 18 4 2020
pubmed: 18 4 2020
medline: 18 4 2020
Statut: epublish

Résumé

Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔV

Identifiants

pubmed: 32300658
doi: 10.1126/sciadv.aaz4948
pii: aaz4948
pmc: PMC7148112
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

eaaz4948

Informations de copyright

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Références

Science. 2016 Oct 14;354(6309):206-209
pubmed: 27708053
Nat Commun. 2015 Sep 08;6:8238
pubmed: 26345730
Adv Mater. 2017 Feb;29(8):
pubmed: 27918109
Nature. 2018 Mar 21;555(7697):497-501
pubmed: 29565365
J Phys Chem Lett. 2014 Apr 3;5(7):1066-71
pubmed: 26274450
J Phys Chem Lett. 2016 Dec 15;7(24):5168-5175
pubmed: 27973891
Phys Chem Chem Phys. 2016 Oct 21;18(39):27051-27066
pubmed: 27346792
J Phys Chem Lett. 2015 Sep 17;6(18):3565-71
pubmed: 26722725
Nat Nanotechnol. 2015 May;10(5):391-402
pubmed: 25947963
Energy Environ Sci. 2016 Jun 8;9(6):1989-1997
pubmed: 27478500
Angew Chem Int Ed Engl. 2017 Jun 26;56(27):7755-7759
pubmed: 28558144
Nat Nanotechnol. 2016 Jan;11(1):75-81
pubmed: 26457966
Chem Sci. 2017 Jan 1;8(1):800-805
pubmed: 28451230
Nature. 2018 Oct;562(7726):245-248
pubmed: 30305741
Nat Commun. 2017 May 11;8:15218
pubmed: 28492235
Science. 2017 Nov 10;358(6364):768-771
pubmed: 28971968
Adv Mater. 2012 Mar 2;24(9):1146-58
pubmed: 22298508
Adv Mater. 2017 Dec;29(46):
pubmed: 29024040
J Phys Chem Lett. 2015 Apr 2;6(7):1249-53
pubmed: 26262982
Science. 2015 Jan 30;347(6221):519-22
pubmed: 25635092
ACS Nano. 2019 Apr 23;13(4):3971-3981
pubmed: 30844243
Small. 2017 Nov;13(42):
pubmed: 28945946
Sci Adv. 2017 Jan 27;3(1):e1601935
pubmed: 28138550
Nature. 2016 Aug 18;536(7616):312-6
pubmed: 27383783
J Phys Chem Lett. 2018 Jul 5;9(13):3756-3765
pubmed: 29901394
Energy Environ Sci. 2018 Dec 1;11(12):3380-3391
pubmed: 30713584
Nat Commun. 2018 Dec 17;9(1):5354
pubmed: 30559392
Science. 2017 Dec 1;358(6367):1192-1197
pubmed: 29123021
Nat Mater. 2017 Mar;16(3):356-362
pubmed: 27941806
Science. 2013 Oct 18;342(6156):341-4
pubmed: 24136964
Nano Lett. 2014 May 14;14(5):2584-90
pubmed: 24684284
Nat Commun. 2016 Apr 21;7:11330
pubmed: 27098114
Adv Mater. 2018 Jul 18;:e1801874
pubmed: 30022541
Nat Commun. 2015 Jun 25;6:7383
pubmed: 26108967
Nat Commun. 2016 May 24;7:11683
pubmed: 27216703

Auteurs

Satyaprasad P Senanayak (SP)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
CSIR- Institute of Minerals and Materials Technology Council of Scientific & Industrial Research, Bhubaneswar-751 013, Odisha, India.

Mojtaba Abdi-Jalebi (M)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
Institute for Materials Discovery, University College London, Torrington Place, London WC1E 7JE, UK.

Varun S Kamboj (VS)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

Remington Carey (R)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

Ravichandran Shivanna (R)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

Tian Tian (T)

Adsorption and Advanced Materials (AAM) Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.

Guillaume Schweicher (G)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

Junzhan Wang (J)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

Nadja Giesbrecht (N)

Department Chemie, Ludwig-Maximilians-Universität-München, Butenandtstr, München, Germany.

Daniele Di Nuzzo (D)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

Harvey E Beere (HE)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

Pablo Docampo (P)

Department Chemie, Ludwig-Maximilians-Universität-München, Butenandtstr, München, Germany.
School of Mathematics, Statistics and Physics, Newcastle University, Herschel Building, Newcastle upon Tyne NE1 7RU, UK.

David A Ritchie (DA)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
Department of Physics, Swansea University, Sketty, Swansea SA2 8PQ, UK.

David Fairen-Jimenez (D)

Adsorption and Advanced Materials (AAM) Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.

Richard H Friend (RH)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

Henning Sirringhaus (H)

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.

Classifications MeSH