A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
Apr 2020
Apr 2020
Historique:
received:
14
09
2019
accepted:
13
01
2020
entrez:
18
4
2020
pubmed:
18
4
2020
medline:
18
4
2020
Statut:
epublish
Résumé
Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔV
Identifiants
pubmed: 32300658
doi: 10.1126/sciadv.aaz4948
pii: aaz4948
pmc: PMC7148112
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
eaaz4948Informations de copyright
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Références
Science. 2016 Oct 14;354(6309):206-209
pubmed: 27708053
Nat Commun. 2015 Sep 08;6:8238
pubmed: 26345730
Adv Mater. 2017 Feb;29(8):
pubmed: 27918109
Nature. 2018 Mar 21;555(7697):497-501
pubmed: 29565365
J Phys Chem Lett. 2014 Apr 3;5(7):1066-71
pubmed: 26274450
J Phys Chem Lett. 2016 Dec 15;7(24):5168-5175
pubmed: 27973891
Phys Chem Chem Phys. 2016 Oct 21;18(39):27051-27066
pubmed: 27346792
J Phys Chem Lett. 2015 Sep 17;6(18):3565-71
pubmed: 26722725
Nat Nanotechnol. 2015 May;10(5):391-402
pubmed: 25947963
Energy Environ Sci. 2016 Jun 8;9(6):1989-1997
pubmed: 27478500
Angew Chem Int Ed Engl. 2017 Jun 26;56(27):7755-7759
pubmed: 28558144
Nat Nanotechnol. 2016 Jan;11(1):75-81
pubmed: 26457966
Chem Sci. 2017 Jan 1;8(1):800-805
pubmed: 28451230
Nature. 2018 Oct;562(7726):245-248
pubmed: 30305741
Nat Commun. 2017 May 11;8:15218
pubmed: 28492235
Science. 2017 Nov 10;358(6364):768-771
pubmed: 28971968
Adv Mater. 2012 Mar 2;24(9):1146-58
pubmed: 22298508
Adv Mater. 2017 Dec;29(46):
pubmed: 29024040
J Phys Chem Lett. 2015 Apr 2;6(7):1249-53
pubmed: 26262982
Science. 2015 Jan 30;347(6221):519-22
pubmed: 25635092
ACS Nano. 2019 Apr 23;13(4):3971-3981
pubmed: 30844243
Small. 2017 Nov;13(42):
pubmed: 28945946
Sci Adv. 2017 Jan 27;3(1):e1601935
pubmed: 28138550
Nature. 2016 Aug 18;536(7616):312-6
pubmed: 27383783
J Phys Chem Lett. 2018 Jul 5;9(13):3756-3765
pubmed: 29901394
Energy Environ Sci. 2018 Dec 1;11(12):3380-3391
pubmed: 30713584
Nat Commun. 2018 Dec 17;9(1):5354
pubmed: 30559392
Science. 2017 Dec 1;358(6367):1192-1197
pubmed: 29123021
Nat Mater. 2017 Mar;16(3):356-362
pubmed: 27941806
Science. 2013 Oct 18;342(6156):341-4
pubmed: 24136964
Nano Lett. 2014 May 14;14(5):2584-90
pubmed: 24684284
Nat Commun. 2016 Apr 21;7:11330
pubmed: 27098114
Adv Mater. 2018 Jul 18;:e1801874
pubmed: 30022541
Nat Commun. 2015 Jun 25;6:7383
pubmed: 26108967
Nat Commun. 2016 May 24;7:11683
pubmed: 27216703