Whole genome sequencing for mutation discovery in a single case of lysosomal storage disease (MPS type 1) in the dog.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 04 2020
16 04 2020
Historique:
received:
01
10
2019
accepted:
06
03
2020
entrez:
18
4
2020
pubmed:
18
4
2020
medline:
26
11
2020
Statut:
epublish
Résumé
Mucopolysaccharidosis (MPS) is a metabolic storage disorder caused by the deficiency of any lysosomal enzyme required for the breakdown of glycosaminoglycans. A 15-month-old Boston Terrier presented with clinical signs consistent with lysosomal storage disease including corneal opacities, multifocal central nervous system disease and progressively worsening clinical course. Diagnosis was confirmed at necropsy based on histopathologic evaluation of multiple organs demonstrating accumulation of mucopolysaccharides. Whole genome sequencing was used to uncover a frame-shift insertion affecting the alpha-L-iduronidase (IDUA) gene (c.19_20insCGGCCCCC), a mutation confirmed in another Boston Terrier presented 2 years later with a similar clinical picture. Both dogs were homozygous for the IDUA mutation and shared coat colors not recognized as normal for the breed by the American Kennel Club. In contrast, the mutation was not detected in 120 unrelated Boston Terriers as well as 202 dogs from other breeds. Recent inbreeding to select for recessive and unusual coat colors may have concentrated this relatively rare allele in the breed. The identification of the variant enables ante-mortem diagnosis of similar cases and selective breeding to avoid the spread of this disease in the breed. Boston Terriers carrying this variant represent a promising model for MPS I with neurological abnormalities in humans.
Identifiants
pubmed: 32300136
doi: 10.1038/s41598-020-63451-4
pii: 10.1038/s41598-020-63451-4
pmc: PMC7162951
doi:
Types de publication
Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6558Références
Neufeld, E. F. & Muenzer, J. In The Metabolic & Molecular Bases of Inherited Disease. 8th Edition. Vol. 3 (eds. C. R. Scriver et al.) Ch. 136, 3421–3452 (McGraw-Hill Professional, 2001).
Coutinho, M. F., Lacerda, L. & Alves, S. Glycosaminoglycan storage disorders: a review. Biochem. Res. Int. 2012, 471325, https://doi.org/10.1155/2012/471325 (2012).
doi: 10.1155/2012/471325
pubmed: 22013531
Wolf, D. A. et al. Gene therapy for neurologic manifestations of mucopolysaccharidoses. Expert. Opin. Drug. Deliv. 12, 283–296, https://doi.org/10.1517/17425247.2015.966682 (2015).
doi: 10.1517/17425247.2015.966682
pubmed: 25510418
Bigger, B. W., Begley, D. J., Virgintino, D. & Pshezhetsky, A. V. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol. Genet. Metab. https://doi.org/10.1016/j.ymgme.2018.08.003 (2018).
doi: 10.1016/j.ymgme.2018.08.003
pubmed: 30145178
Morishita, K. & Petty, R. E. Musculoskeletal manifestations of mucopolysaccharidoses. Rheumatology 50(Suppl 5), v19–25, https://doi.org/10.1093/rheumatology/ker397 (2011).
doi: 10.1093/rheumatology/ker397
pubmed: 22210666
Braunlin, E. A. et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J. Inherit. Metab. Dis. 34, 1183–1197, https://doi.org/10.1007/s10545-011-9359-8 (2011).
doi: 10.1007/s10545-011-9359-8
pubmed: 21744090
pmcid: 3228957
Ashworth, J. L., Biswas, S., Wraith, E. & Lloyd, I. C. The ocular features of the mucopolysaccharidoses. Eye 20, 553–563, https://doi.org/10.1038/sj.eye.6701921 (2006).
doi: 10.1038/sj.eye.6701921
pubmed: 15905869
Summers, C. G. & Ashworth, J. L. Ocular manifestations as key features for diagnosing mucopolysaccharidoses. Rheumatology 50(Suppl 5), v34–40, https://doi.org/10.1093/rheumatology/ker392 (2011).
doi: 10.1093/rheumatology/ker392
pubmed: 22210668
Muenzer, J. Overview of the mucopolysaccharidoses. Rheumatology 50(Suppl 5), v4–12, https://doi.org/10.1093/rheumatology/ker394 (2011).
doi: 10.1093/rheumatology/ker394
pubmed: 22210669
Constantopoulos, G., Dekabian, A. S. & Scheie, H. G. Heterogeneity of disorders in patients with corneal clouding, normal intellect, and mucopolysaccharidosis. Am. J. Ophthalmol. 72, 1106–1117 (1971).
doi: 10.1016/0002-9394(71)91217-7
van de Kamp, J. J., Niermeijer, M. F., von Figura, K. & Giesberts, M. A. Genetic heterogeneity and clinical variability in the Sanfilippo syndrome (types A, B, and C). Clin. Genet. 20, 152–160 (1981).
doi: 10.1111/j.1399-0004.1981.tb01821.x
Beck, M., Glossl, J., Grubisic, A. & Spranger, J. Heterogeneity of Morquio disease. Clin. Genet. 29, 325–331 (1986).
doi: 10.1111/j.1399-0004.1986.tb01262.x
Ashworth, J. L., Biswas, S., Wraith, E. & Lloyd, I. C. Mucopolysaccharidoses and the eye. Surv. Ophthalmol. 51, 1–17, https://doi.org/10.1016/j.survophthal.2005.11.007 (2006).
doi: 10.1016/j.survophthal.2005.11.007
pubmed: 16414358
Pollard, L. M., Jones, J. R. & Wood, T. C. Molecular characterization of 355 mucopolysaccharidosis patients reveals 104 novel mutations. J. Inherit. Metab. Dis. 36, 179–187, https://doi.org/10.1007/s10545-012-9533-7 (2013).
doi: 10.1007/s10545-012-9533-7
pubmed: 22976768
Kadali, S., Naushad, S. M., Radha Rama Devi, A. & Bodiga, V. L. Biochemical, machine learning and molecular approaches for the differential diagnosis of Mucopolysaccharidoses. Mol. Cell Biochem. 458, 27–37, https://doi.org/10.1007/s11010-019-03527-6 (2019).
doi: 10.1007/s11010-019-03527-6
pubmed: 30903511
Haskins, M. E., Giger, U. & Patterson, D. F. In Fabry Disease: Perspectives from 5 Years of FOS (eds A. Mehta, M. Beck, & G. Sunder-Plassmann) (2006).
Haskins, M. E. Animal models for mucopolysaccharidosis disorders and their clinical relevance. Acta Paediatr. 96, 56–62, https://doi.org/10.1111/j.1651-2227.2007.00211.x (2007).
doi: 10.1111/j.1651-2227.2007.00211.x
pubmed: 17391445
pmcid: 3351033
Kol, A. et al. Companion animals: Translational scientist's new best friends. Sci. Transl. Med. 7, 308ps321, https://doi.org/10.1126/scitranslmed.aaa9116 (2015).
doi: 10.1126/scitranslmed.aaa9116
Gurda, B. L., Bradbury, A. M. & Vite, C. H. Canine and Feline Models of Human Genetic Diseases and Their Contributions to Advancing Clinical Therapies. Yale J. Biol. Med. 90, 417–431 (2017).
pubmed: 28955181
pmcid: 5612185
Shull, R. M. & Walker, M. A. Radiographic findings in a canine model of mucopolysaccharidosis I. Changes associated with bone marrow transplantation. Invest. Radiol. 23, 124–130 (1988).
doi: 10.1097/00004424-198802000-00008
Walkley, S. U. et al. Abnormal neuronal metabolism and storage in mucopolysaccharidosis type VI (Maroteaux-Lamy) disease. Neuropathol. Appl. Neurobiol. 31, 536–544, https://doi.org/10.1111/j.1365-2990.2005.00675.x (2005).
doi: 10.1111/j.1365-2990.2005.00675.x
pubmed: 16150124
Spellacy, E., Shull, R. M., Constantopoulos, G. & Neufeld, E. F. A canine model of human alpha-L-iduronidase deficiency. Proc. Natl Acad. Sci. USA 80, 6091–6095, https://doi.org/10.1073/pnas.80.19.6091 (1983).
doi: 10.1073/pnas.80.19.6091
pubmed: 6412235
Aronovich, E. L. et al. Canine heparan sulfate sulfamidase and the molecular pathology underlying Sanfilippo syndrome type A in Dachshunds. Genomics 68, 80–84, https://doi.org/10.1006/geno.2000.6275 (2000).
doi: 10.1006/geno.2000.6275
pubmed: 10950929
Yogalingam, G., Pollard, T., Gliddon, B., Jolly, R. D. & Hopwood, J. J. Identification of a mutation causing mucopolysaccharidosis type IIIA in New Zealand Huntaway dogs. Genomics 79, 150–153, https://doi.org/10.1006/geno.2002.6699 (2002).
doi: 10.1006/geno.2002.6699
pubmed: 11829484
Berman, L. F. P. et al. In Proceedings of the 2nd International Conference: Advances in Canine and Feline Genomics.
Jolly, R. D. et al. Mucopolysaccharidosis type VI in a Miniature Poodle-type dog caused by a deletion in the arylsulphatase B gene. N. Z. Vet. J. 60, 183–188, https://doi.org/10.1080/00480169.2011.642791 (2012).
doi: 10.1080/00480169.2011.642791
pubmed: 22329490
pmcid: 3401909
Ray, J. et al. Cloning of the canine beta-glucuronidase cDNA, mutation identification in canine MPS VII, and retroviral vector-mediated correction of MPS VII cells. Genomics 48, 248–253, https://doi.org/10.1006/geno.1997.5189 (1998).
doi: 10.1006/geno.1997.5189
pubmed: 9521879
Silverstein Dombrowski, D. C. et al. Mucopolysaccharidosis type VII in a German Shepherd Dog. J. Am. Vet. Med. Assoc. 224(553–557), 532–553 (2004).
Hytonen, M. K. et al. A novel GUSB mutation in Brazilian terriers with severe skeletal abnormalities defines the disease as mucopolysaccharidosis VII. PLoS one 7, e40281, https://doi.org/10.1371/journal.pone.0040281 (2012).
doi: 10.1371/journal.pone.0040281
pubmed: 22815736
pmcid: 3395332
Shull, R. M. et al. Canine alpha-L-iduronidase deficiency. A model of mucopolysaccharidosis I. Am. J. Pathol. 109, 244–248 (1982).
pubmed: 6215865
pmcid: 1916101
Shull, R. M. et al. Morphologic and biochemical studies of canine mucopolysaccharidosis I. Am. J. Pathol. 114, 487–495 (1984).
pubmed: 6320652
pmcid: 1900418
Hoeppner, M. P. et al. An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. PLoS one 9, e91172, https://doi.org/10.1371/journal.pone.0091172 (2014).
doi: 10.1371/journal.pone.0091172
pubmed: 24625832
pmcid: 3953330
Lucot, K. L. et al. A Missense Mutation in the Vacuolar Protein Sorting 11 (VPS11) Gene Is Associated with Neuroaxonal Dystrophy in Rottweiler Dogs. G3 8, 2773–2780, https://doi.org/10.1534/g3.118.200376 (2018).
doi: 10.1534/g3.118.200376
pubmed: 29945969
Brown, E. A. et al. FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc. Natl Acad. Sci. USA 114, 11476–11481, https://doi.org/10.1073/pnas.1709082114 (2017).
doi: 10.1073/pnas.1709082114
pubmed: 29073074
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410, https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).
doi: 10.1016/S0022-2836(05)80360-2
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res, https://doi.org/10.1093/nar/gkx1098 (2017).
Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).
doi: 10.1073/pnas.74.12.5463
Pulst, S. M. Genetic linkage analysis. Arch. Neurol. 56, 667–672 (1999).
doi: 10.1001/archneur.56.6.667
Hong, E. P. & Park, J. W. Sample size and statistical power calculation in genetic association studies. Genomics Inf. 10, 117–122, https://doi.org/10.5808/GI.2012.10.2.117 (2012).
doi: 10.5808/GI.2012.10.2.117
pmcid: 3480678
Daiger, S. P. et al. Targeted high-throughput DNA sequencing for gene discovery in retinitis pigmentosa. Adv. Exp. Med. Biol. 664, 325–331, https://doi.org/10.1007/978-1-4419-1399-9_37 (2010).
doi: 10.1007/978-1-4419-1399-9_37
pubmed: 20238032
pmcid: 2909649
Lin, X. et al. Applications of targeted gene capture and next-generation sequencing technologies in studies of human deafness and other genetic disabilities. Hear. Res. 288, 67–76, https://doi.org/10.1016/j.heares.2012.01.004 (2012).
doi: 10.1016/j.heares.2012.01.004
pubmed: 22269275
Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118, https://doi.org/10.1038/nmeth.1419 (2010).
doi: 10.1038/nmeth.1419
pubmed: 20111037
Broeckx, B. J. et al. Improved canine exome designs, featuring ncRNAs and increased coverage of protein coding genes. Sci. Rep. 5, 12810, https://doi.org/10.1038/srep12810 (2015).
doi: 10.1038/srep12810
pubmed: 26235384
pmcid: 4522663
Belkadi, A. et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl Acad. Sci. USA 112, 5473–5478, https://doi.org/10.1073/pnas.1418631112 (2015).
doi: 10.1073/pnas.1418631112
pubmed: 25827230
Sayyab, S. et al. Whole-Genome Sequencing of a Canine Family Trio Reveals a FAM83G Variant Associated with Hereditary Footpad Hyperkeratosis. G3 6, 521–527, https://doi.org/10.1534/g3.115.025643 (2016).
doi: 10.1534/g3.115.025643
pubmed: 26747202
Caduff, M., Bauer, A., Jagannathan, V. & Leeb, T. A single base deletion in the SLC45A2 gene in a Bullmastiff with oculocutaneous albinism. Anim. Genet. 48, 619–621, https://doi.org/10.1111/age.12582 (2017).
doi: 10.1111/age.12582
pubmed: 28737247
Henrissat, B. & Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293(Pt 3), 781–788 (1993).
doi: 10.1042/bj2930781
Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859, https://doi.org/10.1016/S0969-2126(01)00220-9 (1995).
doi: 10.1016/S0969-2126(01)00220-9
pubmed: 8535779
Baker, K. E. & Parker, R. Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr. Opin. Cell Biol. 16, 293–299, https://doi.org/10.1016/j.ceb.2004.03.003 (2004).
doi: 10.1016/j.ceb.2004.03.003
pubmed: 15145354
Clarke, L. A. et al. Murine mucopolysaccharidosis type I: targeted disruption of the murine alpha-L-iduronidase gene. Hum. Mol. Genet. 6, 503–511 (1997).
doi: 10.1093/hmg/6.4.503
Haskins, M. E., Jezyk, P. F., Desnick, R. J., McDonough, S. K. & Patterson, D. F. Alpha-L-iduronidase deficiency in a cat: a model of mucopolysaccharidosis I. Pediatr. Res. 13, 1294–1297 (1979).
doi: 10.1203/00006450-197911000-00018
Stoltzfus, L. J. et al. Cloning and characterization of cDNA encoding canine alpha-L-iduronidase. mRNA deficiency in mucopolysaccharidosis I dog. J. Biol. Chem. 267, 6570–6575 (1992).
pubmed: 1551868
Menon, K. P., Tieu, P. T. & Neufeld, E. F. Architecture of the canine IDUA gene and mutation underlying canine mucopolysaccharidosis I. Genomics 14, 763–768 (1992).
doi: 10.1016/S0888-7543(05)80182-X
Arami, H. et al. Nanomedicine for Spontaneous Brain Tumors: A Companion Clinical Trial. ACS Nano 13, 2858–2869, https://doi.org/10.1021/acsnano.8b04406 (2019).
doi: 10.1021/acsnano.8b04406
pubmed: 30714717
pmcid: 6584029
Olympus. CellSens acquisition software, https://www.olympus-lifescience.com/en/software/cellsens/ .
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120, https://doi.org/10.1093/bioinformatics/btu170 (2014).
doi: 10.1093/bioinformatics/btu170
pubmed: 4103590
pmcid: 4103590
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009).
doi: 10.1093/bioinformatics/btp324
pubmed: 19451168
pmcid: 19451168
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).
doi: 10.1093/bioinformatics/btp352
pubmed: 19505943
pmcid: 2723002
Picard Tools, http://broadinstitute.github.io/picard .
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303, https://doi.org/10.1101/gr.107524.110 (2010).
doi: 10.1101/gr.107524.110
pubmed: 20644199
pmcid: 20644199
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122, https://doi.org/10.1186/s13059-016-0974-4 (2016).
doi: 10.1186/s13059-016-0974-4
pubmed: 27268795
pmcid: 4893825
NCBI. The NCBI Eukaryotic Genome Annotation Pipeline, https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/ (2016).
Martin, M. et al. WhatsHap: fast and accurate read-based phasing. bioRxiv, https://doi.org/10.1101/085050 (2016).
Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).
pubmed: 10547847
Brinkhof, B., Spee, B., Rothuizen, J. & Penning, L. C. Development and evaluation of canine reference genes for accurate quantification of gene expression. Anal. Biochem. 356, 36–43, https://doi.org/10.1016/j.ab.2006.06.001 (2006).
doi: 10.1016/j.ab.2006.06.001
pubmed: 16844072