Whole genome sequencing for mutation discovery in a single case of lysosomal storage disease (MPS type 1) in the dog.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
16 04 2020
Historique:
received: 01 10 2019
accepted: 06 03 2020
entrez: 18 4 2020
pubmed: 18 4 2020
medline: 26 11 2020
Statut: epublish

Résumé

Mucopolysaccharidosis (MPS) is a metabolic storage disorder caused by the deficiency of any lysosomal enzyme required for the breakdown of glycosaminoglycans. A 15-month-old Boston Terrier presented with clinical signs consistent with lysosomal storage disease including corneal opacities, multifocal central nervous system disease and progressively worsening clinical course. Diagnosis was confirmed at necropsy based on histopathologic evaluation of multiple organs demonstrating accumulation of mucopolysaccharides. Whole genome sequencing was used to uncover a frame-shift insertion affecting the alpha-L-iduronidase (IDUA) gene (c.19_20insCGGCCCCC), a mutation confirmed in another Boston Terrier presented 2 years later with a similar clinical picture. Both dogs were homozygous for the IDUA mutation and shared coat colors not recognized as normal for the breed by the American Kennel Club. In contrast, the mutation was not detected in 120 unrelated Boston Terriers as well as 202 dogs from other breeds. Recent inbreeding to select for recessive and unusual coat colors may have concentrated this relatively rare allele in the breed. The identification of the variant enables ante-mortem diagnosis of similar cases and selective breeding to avoid the spread of this disease in the breed. Boston Terriers carrying this variant represent a promising model for MPS I with neurological abnormalities in humans.

Identifiants

pubmed: 32300136
doi: 10.1038/s41598-020-63451-4
pii: 10.1038/s41598-020-63451-4
pmc: PMC7162951
doi:

Types de publication

Case Reports Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6558

Références

Neufeld, E. F. & Muenzer, J. In The Metabolic & Molecular Bases of Inherited Disease. 8th Edition. Vol. 3 (eds. C. R. Scriver et al.) Ch. 136, 3421–3452 (McGraw-Hill Professional, 2001).
Coutinho, M. F., Lacerda, L. & Alves, S. Glycosaminoglycan storage disorders: a review. Biochem. Res. Int. 2012, 471325, https://doi.org/10.1155/2012/471325 (2012).
doi: 10.1155/2012/471325 pubmed: 22013531
Wolf, D. A. et al. Gene therapy for neurologic manifestations of mucopolysaccharidoses. Expert. Opin. Drug. Deliv. 12, 283–296, https://doi.org/10.1517/17425247.2015.966682 (2015).
doi: 10.1517/17425247.2015.966682 pubmed: 25510418
Bigger, B. W., Begley, D. J., Virgintino, D. & Pshezhetsky, A. V. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol. Genet. Metab. https://doi.org/10.1016/j.ymgme.2018.08.003 (2018).
doi: 10.1016/j.ymgme.2018.08.003 pubmed: 30145178
Morishita, K. & Petty, R. E. Musculoskeletal manifestations of mucopolysaccharidoses. Rheumatology 50(Suppl 5), v19–25, https://doi.org/10.1093/rheumatology/ker397 (2011).
doi: 10.1093/rheumatology/ker397 pubmed: 22210666
Braunlin, E. A. et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J. Inherit. Metab. Dis. 34, 1183–1197, https://doi.org/10.1007/s10545-011-9359-8 (2011).
doi: 10.1007/s10545-011-9359-8 pubmed: 21744090 pmcid: 3228957
Ashworth, J. L., Biswas, S., Wraith, E. & Lloyd, I. C. The ocular features of the mucopolysaccharidoses. Eye 20, 553–563, https://doi.org/10.1038/sj.eye.6701921 (2006).
doi: 10.1038/sj.eye.6701921 pubmed: 15905869
Summers, C. G. & Ashworth, J. L. Ocular manifestations as key features for diagnosing mucopolysaccharidoses. Rheumatology 50(Suppl 5), v34–40, https://doi.org/10.1093/rheumatology/ker392 (2011).
doi: 10.1093/rheumatology/ker392 pubmed: 22210668
Muenzer, J. Overview of the mucopolysaccharidoses. Rheumatology 50(Suppl 5), v4–12, https://doi.org/10.1093/rheumatology/ker394 (2011).
doi: 10.1093/rheumatology/ker394 pubmed: 22210669
Constantopoulos, G., Dekabian, A. S. & Scheie, H. G. Heterogeneity of disorders in patients with corneal clouding, normal intellect, and mucopolysaccharidosis. Am. J. Ophthalmol. 72, 1106–1117 (1971).
doi: 10.1016/0002-9394(71)91217-7
van de Kamp, J. J., Niermeijer, M. F., von Figura, K. & Giesberts, M. A. Genetic heterogeneity and clinical variability in the Sanfilippo syndrome (types A, B, and C). Clin. Genet. 20, 152–160 (1981).
doi: 10.1111/j.1399-0004.1981.tb01821.x
Beck, M., Glossl, J., Grubisic, A. & Spranger, J. Heterogeneity of Morquio disease. Clin. Genet. 29, 325–331 (1986).
doi: 10.1111/j.1399-0004.1986.tb01262.x
Ashworth, J. L., Biswas, S., Wraith, E. & Lloyd, I. C. Mucopolysaccharidoses and the eye. Surv. Ophthalmol. 51, 1–17, https://doi.org/10.1016/j.survophthal.2005.11.007 (2006).
doi: 10.1016/j.survophthal.2005.11.007 pubmed: 16414358
Pollard, L. M., Jones, J. R. & Wood, T. C. Molecular characterization of 355 mucopolysaccharidosis patients reveals 104 novel mutations. J. Inherit. Metab. Dis. 36, 179–187, https://doi.org/10.1007/s10545-012-9533-7 (2013).
doi: 10.1007/s10545-012-9533-7 pubmed: 22976768
Kadali, S., Naushad, S. M., Radha Rama Devi, A. & Bodiga, V. L. Biochemical, machine learning and molecular approaches for the differential diagnosis of Mucopolysaccharidoses. Mol. Cell Biochem. 458, 27–37, https://doi.org/10.1007/s11010-019-03527-6 (2019).
doi: 10.1007/s11010-019-03527-6 pubmed: 30903511
Haskins, M. E., Giger, U. & Patterson, D. F. In Fabry Disease: Perspectives from 5 Years of FOS (eds A. Mehta, M. Beck, & G. Sunder-Plassmann) (2006).
Haskins, M. E. Animal models for mucopolysaccharidosis disorders and their clinical relevance. Acta Paediatr. 96, 56–62, https://doi.org/10.1111/j.1651-2227.2007.00211.x (2007).
doi: 10.1111/j.1651-2227.2007.00211.x pubmed: 17391445 pmcid: 3351033
Kol, A. et al. Companion animals: Translational scientist's new best friends. Sci. Transl. Med. 7, 308ps321, https://doi.org/10.1126/scitranslmed.aaa9116 (2015).
doi: 10.1126/scitranslmed.aaa9116
Gurda, B. L., Bradbury, A. M. & Vite, C. H. Canine and Feline Models of Human Genetic Diseases and Their Contributions to Advancing Clinical Therapies. Yale J. Biol. Med. 90, 417–431 (2017).
pubmed: 28955181 pmcid: 5612185
Shull, R. M. & Walker, M. A. Radiographic findings in a canine model of mucopolysaccharidosis I. Changes associated with bone marrow transplantation. Invest. Radiol. 23, 124–130 (1988).
doi: 10.1097/00004424-198802000-00008
Walkley, S. U. et al. Abnormal neuronal metabolism and storage in mucopolysaccharidosis type VI (Maroteaux-Lamy) disease. Neuropathol. Appl. Neurobiol. 31, 536–544, https://doi.org/10.1111/j.1365-2990.2005.00675.x (2005).
doi: 10.1111/j.1365-2990.2005.00675.x pubmed: 16150124
Spellacy, E., Shull, R. M., Constantopoulos, G. & Neufeld, E. F. A canine model of human alpha-L-iduronidase deficiency. Proc. Natl Acad. Sci. USA 80, 6091–6095, https://doi.org/10.1073/pnas.80.19.6091 (1983).
doi: 10.1073/pnas.80.19.6091 pubmed: 6412235
Aronovich, E. L. et al. Canine heparan sulfate sulfamidase and the molecular pathology underlying Sanfilippo syndrome type A in Dachshunds. Genomics 68, 80–84, https://doi.org/10.1006/geno.2000.6275 (2000).
doi: 10.1006/geno.2000.6275 pubmed: 10950929
Yogalingam, G., Pollard, T., Gliddon, B., Jolly, R. D. & Hopwood, J. J. Identification of a mutation causing mucopolysaccharidosis type IIIA in New Zealand Huntaway dogs. Genomics 79, 150–153, https://doi.org/10.1006/geno.2002.6699 (2002).
doi: 10.1006/geno.2002.6699 pubmed: 11829484
Berman, L. F. P. et al. In Proceedings of the 2nd International Conference: Advances in Canine and Feline Genomics.
Jolly, R. D. et al. Mucopolysaccharidosis type VI in a Miniature Poodle-type dog caused by a deletion in the arylsulphatase B gene. N. Z. Vet. J. 60, 183–188, https://doi.org/10.1080/00480169.2011.642791 (2012).
doi: 10.1080/00480169.2011.642791 pubmed: 22329490 pmcid: 3401909
Ray, J. et al. Cloning of the canine beta-glucuronidase cDNA, mutation identification in canine MPS VII, and retroviral vector-mediated correction of MPS VII cells. Genomics 48, 248–253, https://doi.org/10.1006/geno.1997.5189 (1998).
doi: 10.1006/geno.1997.5189 pubmed: 9521879
Silverstein Dombrowski, D. C. et al. Mucopolysaccharidosis type VII in a German Shepherd Dog. J. Am. Vet. Med. Assoc. 224(553–557), 532–553 (2004).
Hytonen, M. K. et al. A novel GUSB mutation in Brazilian terriers with severe skeletal abnormalities defines the disease as mucopolysaccharidosis VII. PLoS one 7, e40281, https://doi.org/10.1371/journal.pone.0040281 (2012).
doi: 10.1371/journal.pone.0040281 pubmed: 22815736 pmcid: 3395332
Shull, R. M. et al. Canine alpha-L-iduronidase deficiency. A model of mucopolysaccharidosis I. Am. J. Pathol. 109, 244–248 (1982).
pubmed: 6215865 pmcid: 1916101
Shull, R. M. et al. Morphologic and biochemical studies of canine mucopolysaccharidosis I. Am. J. Pathol. 114, 487–495 (1984).
pubmed: 6320652 pmcid: 1900418
Hoeppner, M. P. et al. An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. PLoS one 9, e91172, https://doi.org/10.1371/journal.pone.0091172 (2014).
doi: 10.1371/journal.pone.0091172 pubmed: 24625832 pmcid: 3953330
Lucot, K. L. et al. A Missense Mutation in the Vacuolar Protein Sorting 11 (VPS11) Gene Is Associated with Neuroaxonal Dystrophy in Rottweiler Dogs. G3 8, 2773–2780, https://doi.org/10.1534/g3.118.200376 (2018).
doi: 10.1534/g3.118.200376 pubmed: 29945969
Brown, E. A. et al. FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc. Natl Acad. Sci. USA 114, 11476–11481, https://doi.org/10.1073/pnas.1709082114 (2017).
doi: 10.1073/pnas.1709082114 pubmed: 29073074
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410, https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).
doi: 10.1016/S0022-2836(05)80360-2
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res, https://doi.org/10.1093/nar/gkx1098 (2017).
Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).
doi: 10.1073/pnas.74.12.5463
Pulst, S. M. Genetic linkage analysis. Arch. Neurol. 56, 667–672 (1999).
doi: 10.1001/archneur.56.6.667
Hong, E. P. & Park, J. W. Sample size and statistical power calculation in genetic association studies. Genomics Inf. 10, 117–122, https://doi.org/10.5808/GI.2012.10.2.117 (2012).
doi: 10.5808/GI.2012.10.2.117 pmcid: 3480678
Daiger, S. P. et al. Targeted high-throughput DNA sequencing for gene discovery in retinitis pigmentosa. Adv. Exp. Med. Biol. 664, 325–331, https://doi.org/10.1007/978-1-4419-1399-9_37 (2010).
doi: 10.1007/978-1-4419-1399-9_37 pubmed: 20238032 pmcid: 2909649
Lin, X. et al. Applications of targeted gene capture and next-generation sequencing technologies in studies of human deafness and other genetic disabilities. Hear. Res. 288, 67–76, https://doi.org/10.1016/j.heares.2012.01.004 (2012).
doi: 10.1016/j.heares.2012.01.004 pubmed: 22269275
Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118, https://doi.org/10.1038/nmeth.1419 (2010).
doi: 10.1038/nmeth.1419 pubmed: 20111037
Broeckx, B. J. et al. Improved canine exome designs, featuring ncRNAs and increased coverage of protein coding genes. Sci. Rep. 5, 12810, https://doi.org/10.1038/srep12810 (2015).
doi: 10.1038/srep12810 pubmed: 26235384 pmcid: 4522663
Belkadi, A. et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl Acad. Sci. USA 112, 5473–5478, https://doi.org/10.1073/pnas.1418631112 (2015).
doi: 10.1073/pnas.1418631112 pubmed: 25827230
Sayyab, S. et al. Whole-Genome Sequencing of a Canine Family Trio Reveals a FAM83G Variant Associated with Hereditary Footpad Hyperkeratosis. G3 6, 521–527, https://doi.org/10.1534/g3.115.025643 (2016).
doi: 10.1534/g3.115.025643 pubmed: 26747202
Caduff, M., Bauer, A., Jagannathan, V. & Leeb, T. A single base deletion in the SLC45A2 gene in a Bullmastiff with oculocutaneous albinism. Anim. Genet. 48, 619–621, https://doi.org/10.1111/age.12582 (2017).
doi: 10.1111/age.12582 pubmed: 28737247
Henrissat, B. & Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293(Pt 3), 781–788 (1993).
doi: 10.1042/bj2930781
Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859, https://doi.org/10.1016/S0969-2126(01)00220-9 (1995).
doi: 10.1016/S0969-2126(01)00220-9 pubmed: 8535779
Baker, K. E. & Parker, R. Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr. Opin. Cell Biol. 16, 293–299, https://doi.org/10.1016/j.ceb.2004.03.003 (2004).
doi: 10.1016/j.ceb.2004.03.003 pubmed: 15145354
Clarke, L. A. et al. Murine mucopolysaccharidosis type I: targeted disruption of the murine alpha-L-iduronidase gene. Hum. Mol. Genet. 6, 503–511 (1997).
doi: 10.1093/hmg/6.4.503
Haskins, M. E., Jezyk, P. F., Desnick, R. J., McDonough, S. K. & Patterson, D. F. Alpha-L-iduronidase deficiency in a cat: a model of mucopolysaccharidosis I. Pediatr. Res. 13, 1294–1297 (1979).
doi: 10.1203/00006450-197911000-00018
Stoltzfus, L. J. et al. Cloning and characterization of cDNA encoding canine alpha-L-iduronidase. mRNA deficiency in mucopolysaccharidosis I dog. J. Biol. Chem. 267, 6570–6575 (1992).
pubmed: 1551868
Menon, K. P., Tieu, P. T. & Neufeld, E. F. Architecture of the canine IDUA gene and mutation underlying canine mucopolysaccharidosis I. Genomics 14, 763–768 (1992).
doi: 10.1016/S0888-7543(05)80182-X
Arami, H. et al. Nanomedicine for Spontaneous Brain Tumors: A Companion Clinical Trial. ACS Nano 13, 2858–2869, https://doi.org/10.1021/acsnano.8b04406 (2019).
doi: 10.1021/acsnano.8b04406 pubmed: 30714717 pmcid: 6584029
Olympus. CellSens acquisition software, https://www.olympus-lifescience.com/en/software/cellsens/ .
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120, https://doi.org/10.1093/bioinformatics/btu170 (2014).
doi: 10.1093/bioinformatics/btu170 pubmed: 4103590 pmcid: 4103590
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009).
doi: 10.1093/bioinformatics/btp324 pubmed: 19451168 pmcid: 19451168
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).
doi: 10.1093/bioinformatics/btp352 pubmed: 19505943 pmcid: 2723002
Picard Tools, http://broadinstitute.github.io/picard .
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303, https://doi.org/10.1101/gr.107524.110 (2010).
doi: 10.1101/gr.107524.110 pubmed: 20644199 pmcid: 20644199
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122, https://doi.org/10.1186/s13059-016-0974-4 (2016).
doi: 10.1186/s13059-016-0974-4 pubmed: 27268795 pmcid: 4893825
NCBI. The NCBI Eukaryotic Genome Annotation Pipeline, https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/ (2016).
Martin, M. et al. WhatsHap: fast and accurate read-based phasing. bioRxiv, https://doi.org/10.1101/085050 (2016).
Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).
pubmed: 10547847
Brinkhof, B., Spee, B., Rothuizen, J. & Penning, L. C. Development and evaluation of canine reference genes for accurate quantification of gene expression. Anal. Biochem. 356, 36–43, https://doi.org/10.1016/j.ab.2006.06.001 (2006).
doi: 10.1016/j.ab.2006.06.001 pubmed: 16844072

Auteurs

Tamer A Mansour (TA)

Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States. drtamermansour@gmail.com.
Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt. drtamermansour@gmail.com.

Kevin D Woolard (KD)

Department of Pathology, Immunology and Microbiology, School of Veterinary Medicine, University of California, Davis, CA, United States.

Karen L Vernau (KL)

Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States.

Devin M Ancona (DM)

VCA West Coast Specialty and Emergency Animal Hospital, Fountain Valley, CA, United States.

Sara M Thomasy (SM)

Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States.
Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, CA, United States.

Lionel Sebbag (L)

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.

Bret A Moore (BA)

Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States.

Marguerite F Knipe (MF)

William R Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA, United States.

Haitham A Seada (HA)

Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States.

Tina M Cowan (TM)

Department of Pathology, Stanford University, Palo Alto, CA, United States.

Miriam Aguilar (M)

Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States.

C Titus Brown (C)

Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States.

Danika L Bannasch (DL)

Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States. dlbannasch@ucdavis.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH