Cationic Iridium/Chiral Bisphosphine-Catalyzed Enantioselective Hydroacylation of Ketones.
C−H activation
cationic iridium
enantioselective
hydroacylation
ketone
Journal
Chemistry, an Asian journal
ISSN: 1861-471X
Titre abrégé: Chem Asian J
Pays: Germany
ID NLM: 101294643
Informations de publication
Date de publication:
17 Jun 2020
17 Jun 2020
Historique:
received:
24
03
2020
revised:
09
04
2020
pubmed:
16
4
2020
medline:
16
4
2020
entrez:
16
4
2020
Statut:
ppublish
Résumé
A facile and convenient synthesis of the chiral phthalide framework catalyzed by cationic iridium was developed. The method utilized cationic iridium/bisphosphine-catalyzed asymmetric intramolecular carbonyl hydroacylation of 2-keto benzaldehydes to furnish the corresponding optically active phthalide products in good to excellent enantioselectivities (up to 98% ee). The mechanistic studies using a deuterium-labelled substrate suggested that the reaction involved an intramolecular carbonyl insertion mechanism to iridium hydride intermediate. In addition, we investigated the kinetic isotope effect (KIE) of intramolecular hydroacylation with deuterated substrate and determined that the C-H activation step is not included in the turnover-limiting step.
Identifiants
pubmed: 32294313
doi: 10.1002/asia.202000386
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1858-1862Subventions
Organisme : Society for the Promotion of Science
ID : JP19K15575
Informations de copyright
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
For reviews, see:
P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192-2452:;
M. Nagamoto, T. Nishimura, ACS Catal. 2017, 7, 833-847:;
C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908-8976:;
J. R. Hummel, J. A. Boerth, J. A. Ellman, Chem. Rev. 2017, 117, 9163-9227:;
L. Yang, H. Huang, Chem. Rev. 2015, 115, 3468-3517:;
S. K. Murphy, V. M. Dong, Chem. Commun. 2014, 50, 13645-13649:;
J. C. Leung, M. J. Krische, Chem. Sci. 2012, 3, 2202-2209:;
M. C. Willis, Chem. Rev. 2010, 110, 725-748:;
C.-H. Jun, E.-A. Jo, J.-W. Park, Eur. J. Org. Chem. 2007, 1869-1881.
For recent examples, see:
A. Prades, M. Fernández, S. D. Pike, M. C. Willis, A. S. Weller, Angew. Chem. Int. Ed. 2015, 54, 8520-8524:;
Q.-A. Chen, F. A. Cruz, V. M. Dong, J. Am. Chem. Soc. 2015, 137, 3157-3160:;
X.-W. Du, L. M. Stanley, Org. Lett. 2015, 17, 3276-3279:;
M. Nagamoto, T. Nishimura, Chem. Commun. 2015, 51, 13791-13794:;
J. F. Hooper, S. Seo, F. R. Truscott, J. D. Neuhaus, M. C. Willis, J. Am. Chem. Soc. 2016, 138, 1630-1634:;
M. K. Majhail, P. M. Ylioja, M. C. Willis, Chem. Eur. J. 2016, 22, 7879-7884:;
A. Bouisseau, M. Gao, M. C. Willis, Chem. Eur. J. 2016, 22, 15624-15628:;
A. Bouisseau, J. Glancy, M. C. Willis, Org. Lett. 2016, 18, 5676-5679:;
M. Fernández, M. Castaing, M. C. Willis, Chem. Sci. 2017, 8, 536-540:;
R. N. Straker, M. K. Majhail, M. C. Willis, Chem. Sci., 2017, 8, 7963-7968:;
M. Gao, M. C. Willis, Org. Lett. 2017, 19, 2734-2737:;
T. J. Coxon, M. Fernández, J. Barwick-silk, A. I. McKay, L. E. Britton, A. S. Weller, M. C. Willis, J. Am. Chem. Soc., 2017, 139, 10142-10149:;
J. Barwick-silk, S. Hardy, M. C. Willis, A. S. Weller, J. Am. Chem. Soc. 2018, 140, 7347-7357:;
R. N. Straker, M. Formica, J. D. Lupton, J. Niu, M. C. Willis, Tetrahedron 2018, 74, 5408-5414:;
F. Wang, Q. Meng, ChemistrySelect 2019, 4, 11315-11320, and references therein.
H. Horino, T. Ito, A. Yamamoto, Chem. Lett. 1978, 7, 17-20:;
S. H. Bergens, D. P. Fairlie, B. Bosnich, Organometallics 1990, 9, 566-571:;
K. Fuji, T. Morimoto, K. Tsutsumi, K. Kakiuchi, Chem. Commun. 2005, 3295-3297:;
Z. Shen, H. A. Khan, V. M. Dong, J. Am. Chem. Soc. 2008, 130, 2916-2917:;
Z. Shen, P. K. Dornan, H. A. Khan, T. K. Woo, V. M. Dong, J. Am. Chem. Soc. 2009, 131, 1077-1091:;
D. H. T. Phan, B. Kim, V. M. Dong, J. Am. Chem. Soc. 2009, 131, 15608-15609:;
S. Omura, T. Fukuyama, Y. Murakami, H. Okamoto, I. Ryu, Chem. Commun. 2009, 6741-6743:;
R. J. Pawley, G. L. Moxham, R. Dallanegra, A. B. Chaplin, S. K. Brayshaw, A. S. Weller, M. C. Willis, Organometallics 2010, 29, 1717-1728:;
K. G. M. Kou, D. N. Le, V. M. Dong, J. Am. Chem. Soc. 2014, 136, 9471-9476:;
K. G. M. Kou, L. E. Longobardi, V. M. Dong, Adv. Synth. Catal. 2015, 357, 2233-2237:;
X. Wu, Z. Chen, Y.-B. Bai, V. M. Dong, J. Am. Chem. Soc. 2016, 138, 12013-12016:;
T. Yasukawa, S. Kobayashi, Chem. Lett. 2017, 46, 98-100.
R. Karmakar, P. Pahari, D. Mal, Chem. Rev. 2014, 114, 6213-6284:;
A. León, M. Del-Ángel, J. L. Ávila, G. Delgado, in Progress in the Chemistry of Organic Natural Products, Vol. 104, (Eds.: A. D. Kinghorn, H. Falk, S. Gibbons, J. Kobayashi), Springer, Switzerland, 2017, 127-246:;
S. K. Ray, M. M. Sadhu, R. G. Biswas, R. A. Unhale, V. K. Singh, Org. Lett. 2019, 21, 417-422.
D. C. Gerbino, D. Augner, N. Slavov, H.-G. Schmalz, Org. Lett. 2012, 14, 2338-2341:;
M. Yohda, Y. Yamamoto, Org. Biomol. Chem. 2015, 13, 10874-10880, and references therein:
J. M. Cabrera, J. Tauber, M. J. Krische, Angew. Chem. Int. Ed. 2018, 57, 1390-1393:;
A. Renzetti, K. Fukumoto, Molecules 2019, 24, 824.
S. K. Murphy, V. M. Dong, J. Am. Chem. Soc. 2013, 135, 5553-5556.
J. Yang, N. Yoshikai, J. Am. Chem. Soc. 2014, 136, 16748-16751.
T. Shirai, K. Sugimoto, M. Iwasaki, R. Sumida, H. Fujita, Y. Yamamoto, Synlett 2019, 30, 972-976.
Absolute Configuration of product 2 a was determined to be (S) by the specific rotation reported for (S)-isomer and retention times of two enantiomers in HPLC analysis, See: ref. 3 f).
When the hydroacylation reaction was carried out under an atmosphere of carbon monoxide (1.0 atm), a desired product was not obtained and the starting materials 1 a was recovered quantitatively.
To study the catalytic intermediates formed during the hydroacylation with competitive decarbonylation by cationic iridium, IR study under the standard decarbonylation conditions was carried out (see supporting information for details). The reaction mixture obtained by decarbonylation was vacuum dried, IR spectroscopy of the remaining solid residue revealed a strong band at 2090-2100 cm−1 corresponding to a carbonyl ligand. Thus, this indicated that the carbon monoxide generated by competitive decarbonylation of the aldehyde may serves as a carbonyl ligand to iridium center.