Cationic Iridium/Chiral Bisphosphine-Catalyzed Enantioselective Hydroacylation of Ketones.

C−H activation cationic iridium enantioselective hydroacylation ketone

Journal

Chemistry, an Asian journal
ISSN: 1861-471X
Titre abrégé: Chem Asian J
Pays: Germany
ID NLM: 101294643

Informations de publication

Date de publication:
17 Jun 2020
Historique:
received: 24 03 2020
revised: 09 04 2020
pubmed: 16 4 2020
medline: 16 4 2020
entrez: 16 4 2020
Statut: ppublish

Résumé

A facile and convenient synthesis of the chiral phthalide framework catalyzed by cationic iridium was developed. The method utilized cationic iridium/bisphosphine-catalyzed asymmetric intramolecular carbonyl hydroacylation of 2-keto benzaldehydes to furnish the corresponding optically active phthalide products in good to excellent enantioselectivities (up to 98% ee). The mechanistic studies using a deuterium-labelled substrate suggested that the reaction involved an intramolecular carbonyl insertion mechanism to iridium hydride intermediate. In addition, we investigated the kinetic isotope effect (KIE) of intramolecular hydroacylation with deuterated substrate and determined that the C-H activation step is not included in the turnover-limiting step.

Identifiants

pubmed: 32294313
doi: 10.1002/asia.202000386
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1858-1862

Subventions

Organisme : Society for the Promotion of Science
ID : JP19K15575

Informations de copyright

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

For reviews, see:
P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192-2452:;
M. Nagamoto, T. Nishimura, ACS Catal. 2017, 7, 833-847:;
C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908-8976:;
J. R. Hummel, J. A. Boerth, J. A. Ellman, Chem. Rev. 2017, 117, 9163-9227:;
L. Yang, H. Huang, Chem. Rev. 2015, 115, 3468-3517:;
S. K. Murphy, V. M. Dong, Chem. Commun. 2014, 50, 13645-13649:;
J. C. Leung, M. J. Krische, Chem. Sci. 2012, 3, 2202-2209:;
M. C. Willis, Chem. Rev. 2010, 110, 725-748:;
C.-H. Jun, E.-A. Jo, J.-W. Park, Eur. J. Org. Chem. 2007, 1869-1881.
For recent examples, see:
A. Prades, M. Fernández, S. D. Pike, M. C. Willis, A. S. Weller, Angew. Chem. Int. Ed. 2015, 54, 8520-8524:;
Q.-A. Chen, F. A. Cruz, V. M. Dong, J. Am. Chem. Soc. 2015, 137, 3157-3160:;
X.-W. Du, L. M. Stanley, Org. Lett. 2015, 17, 3276-3279:;
M. Nagamoto, T. Nishimura, Chem. Commun. 2015, 51, 13791-13794:;
J. F. Hooper, S. Seo, F. R. Truscott, J. D. Neuhaus, M. C. Willis, J. Am. Chem. Soc. 2016, 138, 1630-1634:;
M. K. Majhail, P. M. Ylioja, M. C. Willis, Chem. Eur. J. 2016, 22, 7879-7884:;
A. Bouisseau, M. Gao, M. C. Willis, Chem. Eur. J. 2016, 22, 15624-15628:;
A. Bouisseau, J. Glancy, M. C. Willis, Org. Lett. 2016, 18, 5676-5679:;
M. Fernández, M. Castaing, M. C. Willis, Chem. Sci. 2017, 8, 536-540:;
R. N. Straker, M. K. Majhail, M. C. Willis, Chem. Sci., 2017, 8, 7963-7968:;
M. Gao, M. C. Willis, Org. Lett. 2017, 19, 2734-2737:;
T. J. Coxon, M. Fernández, J. Barwick-silk, A. I. McKay, L. E. Britton, A. S. Weller, M. C. Willis, J. Am. Chem. Soc., 2017, 139, 10142-10149:;
J. Barwick-silk, S. Hardy, M. C. Willis, A. S. Weller, J. Am. Chem. Soc. 2018, 140, 7347-7357:;
R. N. Straker, M. Formica, J. D. Lupton, J. Niu, M. C. Willis, Tetrahedron 2018, 74, 5408-5414:;
F. Wang, Q. Meng, ChemistrySelect 2019, 4, 11315-11320, and references therein.
 
H. Horino, T. Ito, A. Yamamoto, Chem. Lett. 1978, 7, 17-20:;
S. H. Bergens, D. P. Fairlie, B. Bosnich, Organometallics 1990, 9, 566-571:;
K. Fuji, T. Morimoto, K. Tsutsumi, K. Kakiuchi, Chem. Commun. 2005, 3295-3297:;
Z. Shen, H. A. Khan, V. M. Dong, J. Am. Chem. Soc. 2008, 130, 2916-2917:;
Z. Shen, P. K. Dornan, H. A. Khan, T. K. Woo, V. M. Dong, J. Am. Chem. Soc. 2009, 131, 1077-1091:;
D. H. T. Phan, B. Kim, V. M. Dong, J. Am. Chem. Soc. 2009, 131, 15608-15609:;
S. Omura, T. Fukuyama, Y. Murakami, H. Okamoto, I. Ryu, Chem. Commun. 2009, 6741-6743:;
R. J. Pawley, G. L. Moxham, R. Dallanegra, A. B. Chaplin, S. K. Brayshaw, A. S. Weller, M. C. Willis, Organometallics 2010, 29, 1717-1728:;
K. G. M. Kou, D. N. Le, V. M. Dong, J. Am. Chem. Soc. 2014, 136, 9471-9476:;
K. G. M. Kou, L. E. Longobardi, V. M. Dong, Adv. Synth. Catal. 2015, 357, 2233-2237:;
X. Wu, Z. Chen, Y.-B. Bai, V. M. Dong, J. Am. Chem. Soc. 2016, 138, 12013-12016:;
T. Yasukawa, S. Kobayashi, Chem. Lett. 2017, 46, 98-100.
 
R. Karmakar, P. Pahari, D. Mal, Chem. Rev. 2014, 114, 6213-6284:;
A. León, M. Del-Ángel, J. L. Ávila, G. Delgado, in Progress in the Chemistry of Organic Natural Products, Vol. 104, (Eds.: A. D. Kinghorn, H. Falk, S. Gibbons, J. Kobayashi), Springer, Switzerland, 2017, 127-246:;
S. K. Ray, M. M. Sadhu, R. G. Biswas, R. A. Unhale, V. K. Singh, Org. Lett. 2019, 21, 417-422.
 
D. C. Gerbino, D. Augner, N. Slavov, H.-G. Schmalz, Org. Lett. 2012, 14, 2338-2341:;
M. Yohda, Y. Yamamoto, Org. Biomol. Chem. 2015, 13, 10874-10880, and references therein:
J. M. Cabrera, J. Tauber, M. J. Krische, Angew. Chem. Int. Ed. 2018, 57, 1390-1393:;
A. Renzetti, K. Fukumoto, Molecules 2019, 24, 824.
S. K. Murphy, V. M. Dong, J. Am. Chem. Soc. 2013, 135, 5553-5556.
J. Yang, N. Yoshikai, J. Am. Chem. Soc. 2014, 136, 16748-16751.
T. Shirai, K. Sugimoto, M. Iwasaki, R. Sumida, H. Fujita, Y. Yamamoto, Synlett 2019, 30, 972-976.
Absolute Configuration of product 2 a was determined to be (S) by the specific rotation reported for (S)-isomer and retention times of two enantiomers in HPLC analysis, See: ref. 3 f).
When the hydroacylation reaction was carried out under an atmosphere of carbon monoxide (1.0 atm), a desired product was not obtained and the starting materials 1 a was recovered quantitatively.
To study the catalytic intermediates formed during the hydroacylation with competitive decarbonylation by cationic iridium, IR study under the standard decarbonylation conditions was carried out (see supporting information for details). The reaction mixture obtained by decarbonylation was vacuum dried, IR spectroscopy of the remaining solid residue revealed a strong band at 2090-2100 cm−1 corresponding to a carbonyl ligand. Thus, this indicated that the carbon monoxide generated by competitive decarbonylation of the aldehyde may serves as a carbonyl ligand to iridium center.

Auteurs

Tomohiko Shirai (T)

Department of Social Design Engineering, National Institute of Technology, Kochi College, 200-1 Monobe, Otsu, Nankoku, Kochi, 783-8508, Japan.

Tomoya Iwasaki (T)

Department of Materials Science and Engineering, National Institute of Technology, Kochi College, 200-1 Monobe otsu, Nankoku, Kochi, 783-8508, Japan.

Kazuya Kanemoto (K)

Department of Applied Chemistry, Institute of Science and Engineering, Chuo University Kasuga 1-3-27, Bunkyo-ku, Tokyo, 112-8551, Japan.

Yasunori Yamamoto (Y)

Division of Applied Chemistry and Frontier Chemistry Center (FCC), Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Classifications MeSH