Stereotactically Injected Kv1.2 and CASPR2 Antisera Cause Differential Effects on CA1 Synaptic and Cellular Excitability, but Both Enhance the Vulnerability to Pro-epileptic Conditions.

limbic encephalitis long-term potentiation spike frequency adaptation synaptic transmission voltage-gated potassium channel

Journal

Frontiers in synaptic neuroscience
ISSN: 1663-3563
Titre abrégé: Front Synaptic Neurosci
Pays: Switzerland
ID NLM: 101548972

Informations de publication

Date de publication:
2020
Historique:
received: 02 10 2019
accepted: 06 03 2020
entrez: 10 4 2020
pubmed: 10 4 2020
medline: 10 4 2020
Statut: epublish

Résumé

We present a case of voltage-gated potassium channel (VGKC) complex antibody-positive limbic encephalitis (LE) harboring autoantibodies against Kv1.2. Since the patient responded well to immunotherapy, the autoantibodies were regarded as pathogenic. We aimed to characterize the pathophysiological role of this antibody in comparison to an antibody against the VGKC-associated protein contactin-associated protein-2 (CASPR2). Stereotactic injection of patient sera (anti-Kv1.2-associated LE or anti-CASPR2 encephalopathy) and a control subject was performed into the hippocampus of the anesthetized rat We observed that the slope of the field excitatory postsynaptic potential (fEPSP) was significantly increased at Schaffer collateral-CA1 synapses in anti-Kv1.2-treated and anti-CASPR2-treated rats, but not at medial perforant path-dentate gyrus synapses. The increase of the fEPSP slope in CA1 was accompanied by a decrease of the paired-pulse ratio in anti-Kv1.2, but not in anti-CASPR2 tissue, indicating presynaptic site of anti-Kv1.2. In addition, anti-Kv1.2 tissue showed enhanced LTP in CA1, but dentate gyrus LTP remained unaltered. Importantly, LTP in slices from anti-CASPR2-treated animals did not differ from control values. Intracellular recordings from CA1 neurons revealed that the resting membrane potential and a single action potential were not different between anti-Kv1.2 and control tissue. However, when the depolarization was prolonged, the number of action potentials elicited was reduced in anti-Kv1.2-treated tissue compared to both control and anti-CASPR2 tissue. In contrast, polyspike discharges induced by removal of Mg Patient serum containing anti-Kv1.2 facilitates presynaptic transmitter release as well as postsynaptic depolarization at the Schaffer-collateral-CA1 synapse, but not in the dentate gyrus. As a consequence, both synaptic transmission and LTP in CA1 are facilitated and action potential firing is altered. In contrast, anti-CASPR2 leads to increased postsynaptic potentials, but without changing LTP or firing properties suggesting that anti-Kv1.2 and anti-CASPR2 differ in their cellular effects. Both patient sera alter susceptibility to epileptic conditions, but presumably by different mechanisms.

Identifiants

pubmed: 32269520
doi: 10.3389/fnsyn.2020.00013
pmc: PMC7110982
doi:

Types de publication

Journal Article

Langues

eng

Pagination

13

Informations de copyright

Copyright © 2020 Kirschstein, Sadkiewicz, Hund-Göschel, Becker, Guli, Müller, Rohde, Hübner, Brehme, Kolbaske, Porath, Sellmann, Großmann, Wittstock, Syrbe, Storch and Köhling.

Références

Nat Genet. 2015 Apr;47(4):393-399
pubmed: 25751627
J Neurosci. 2010 Sep 22;30(38):12885-95
pubmed: 20861392
Front Neurol. 2015 Aug 28;6:189
pubmed: 26379623
Brain. 2018 Nov 1;141(11):3144-3159
pubmed: 30346486
Nature. 1994 May 26;369(6478):289-94
pubmed: 8183366
Nature. 1993 Sep 2;365(6441):75-9
pubmed: 8361541
J Neurophysiol. 2007 Sep;98(3):1501-25
pubmed: 17634333
J Neurosci. 2001 Dec 15;21(24):9955-63
pubmed: 11739602
Epilepsia. 2011 Jan;52(1):121-31
pubmed: 21054347
J Neurosci. 2002 Dec 1;22(23):10106-15
pubmed: 12451111
J Physiol (Paris). 1984;79(4):280-303
pubmed: 6152294
Brain Res. 1997 Sep 5;767(2):220-7
pubmed: 9367251
Brain. 2002 Aug;125(Pt 8):1887-95
pubmed: 12135978
Neuron. 1998 Apr;20(4):809-19
pubmed: 9581771
Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15037-42
pubmed: 9844011
Eur J Neurosci. 1995 Nov 1;7(11):2189-205
pubmed: 8563969
Mol Neurobiol. 2007 Apr;35(2):129-50
pubmed: 17917103
Biochem J. 1989 Feb 1;257(3):899-903
pubmed: 2930493
EMBO J. 1989 Nov;8(11):3235-44
pubmed: 2555158
Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1637-41
pubmed: 8127858
Brain Res. 2016 Feb 15;1633:10-18
pubmed: 26721688
Front Cell Neurosci. 2016 May 18;10:130
pubmed: 27242441
Front Synaptic Neurosci. 2018 Jul 31;10:26
pubmed: 30108497
Histochem Cell Biol. 2010 Mar;133(3):301-12
pubmed: 20012645
J Neurosci. 2008 Dec 31;28(53):14329-40
pubmed: 19118165
J Neurosci. 2015 Feb 25;35(8):3515-24
pubmed: 25716850
J Physiol. 2006 Mar 1;571(Pt 2):371-89
pubmed: 16373387
Science. 2003 Aug 1;301(5633):646-9
pubmed: 12893943
Lancet Neurol. 2010 Aug;9(8):776-85
pubmed: 20580615
Annu Rev Physiol. 2002;64:355-405
pubmed: 11826273
J Neurol Neurosurg Psychiatry. 2017 Apr;88(4):353-361
pubmed: 28115470
J Neurosci. 1994 Apr;14(4):2408-17
pubmed: 8158277
Brain. 2010 Sep;133(9):2734-48
pubmed: 20663977
J Biol Chem. 1995 Dec 1;270(48):28531-4
pubmed: 7499366
Ann Neurol. 2001 Jul;50(1):73-8
pubmed: 11456313
J Neurosci. 2012 Aug 8;32(32):11082-94
pubmed: 22875940
FEBS Lett. 1995 Dec 27;377(3):383-9
pubmed: 8549760
Hear Res. 2000 Feb;140(1-2):77-90
pubmed: 10675636
Biophys J. 2007 Dec 15;93(12):4173-86
pubmed: 17766348
Brain Res. 2007 May 4;1144:1-18
pubmed: 17324383
Brain. 2006 Jun;129(Pt 6):1570-84
pubmed: 16613892
Proc Natl Acad Sci U S A. 1988 Jul;85(13):4919-23
pubmed: 2455300
J Neurosci. 1999 Oct 15;19(20):8789-98
pubmed: 10516298
J Neurosci. 1994 Aug;14(8):4588-99
pubmed: 8046438
J Neurosci. 2001 Aug 15;21(16):5973-83
pubmed: 11487620
Front Neurol. 2019 Jun 05;10:586
pubmed: 31231304
J Physiol. 1998 May 15;509 ( Pt 1):171-82
pubmed: 9547391
FEBS Lett. 1995 Mar 13;361(1):13-6
pubmed: 7890032
Nature. 1988 Nov 24;336(6197):379-81
pubmed: 3194020
Front Neurol. 2015 Aug 03;6:167
pubmed: 26284025
Epilepsia. 2007 Nov;48(11):2023-46
pubmed: 17651419
J Cell Sci. 2017 Jul 1;130(13):2209-2220
pubmed: 28533267
J Physiol. 2003 Jul 1;550(Pt 1):27-33
pubmed: 12777451

Auteurs

Timo Kirschstein (T)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.
Department of Neurology, University of Rostock, Rostock, Germany.
Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany.

Erika Sadkiewicz (E)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.

Gerda Hund-Göschel (G)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.

Juliane Becker (J)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.

Xiati Guli (X)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.

Steffen Müller (S)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.

Marco Rohde (M)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.

Dora-Charlotte Hübner (DC)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.

Hannes Brehme (H)

Department of Neurology, University of Rostock, Rostock, Germany.

Stephan Kolbaske (S)

Department of Neurology, University of Rostock, Rostock, Germany.

Katrin Porath (K)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.

Tina Sellmann (T)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.

Annette Großmann (A)

Institute of Diagnostic and Intervention Radiology, University of Rostock, Rostock, Germany.

Matthias Wittstock (M)

Department of Neurology, University of Rostock, Rostock, Germany.

Steffen Syrbe (S)

Clinik for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany.

Alexander Storch (A)

Department of Neurology, University of Rostock, Rostock, Germany.
Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany.

Rüdiger Köhling (R)

Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.
Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany.

Classifications MeSH