Chiral Interaction Is a Decisive Factor To Replace d-DNA with l-DNA Aptamers.


Journal

Analytical chemistry
ISSN: 1520-6882
Titre abrégé: Anal Chem
Pays: United States
ID NLM: 0370536

Informations de publication

Date de publication:
05 05 2020
Historique:
pubmed: 7 4 2020
medline: 11 2 2021
entrez: 7 4 2020
Statut: ppublish

Résumé

Nucleic acid aptamers have been widely used in various fields such as biosensing, DNA chip, and medical diagnosis. However, the high susceptibility of nucleic acids to ubiquitous nucleases reduces the biostability of aptamers and limits their applications in biological contexts. Therefore, improving the biostability of aptamers becomes an urgent need. Herein, we present a simple strategy to resolve this problem by directly replacing the d-DNA-based aptamers with left-handed l-DNA. By testing several reported aptamers against respective targets, we found that our proposed strategy stood up well for nonchiral small molecule targets (e.g., Hemin and cationic porphyrin) and chiral targets whose interactions with aptamers are chirality-independent (e.g., ATP). We also found that the l-DNA aptamers were indeed endowed with greatly improved biostability due to the extraordinary resistance of l-DNA to nuclease digestion. With respect to other small-molecule targets whose interactions with aptamers are chirality-dependent (e.g., kanamycin) and biomacromolecules (e.g., tyrosine kinase-7), however, the proposed strategy was not entirely effective likely due to the participation of the DNA backbone chirality into the target recognition. In spite of this limitation, this strategy indeed paves an easy way to screen highly biostable aptamers important for the applications in many fields.

Identifiants

pubmed: 32249564
doi: 10.1021/acs.analchem.9b05676
doi:

Substances chimiques

Aptamers, Nucleotide 0
Adenosine Triphosphate 8L70Q75FXE
DNA 9007-49-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6470-6477

Auteurs

Xue-Nan Feng (XN)

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

Yun-Xi Cui (YX)

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

Jing Zhang (J)

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

An-Na Tang (AN)

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

Han-Bin Mao (HB)

Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States.

De-Ming Kong (DM)

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH