Re-annotation of the Theileria parva genome refines 53% of the proteome and uncovers essential components of N-glycosylation, a conserved pathway in many organisms.
East coast fever
Genome
N-glycosylation
Re-annotation
Theileria
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
03 Apr 2020
03 Apr 2020
Historique:
received:
27
08
2019
accepted:
18
03
2020
entrez:
5
4
2020
pubmed:
5
4
2020
medline:
20
11
2020
Statut:
epublish
Résumé
The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome. The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized. The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.
Sections du résumé
BACKGROUND
BACKGROUND
The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome.
RESULTS
RESULTS
The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized.
CONCLUSIONS
CONCLUSIONS
The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.
Identifiants
pubmed: 32245418
doi: 10.1186/s12864-020-6683-0
pii: 10.1186/s12864-020-6683-0
pmc: PMC7126163
doi:
Substances chimiques
Protozoan Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
279Subventions
Organisme : National Institute of Allergy and Infectious Diseases
ID : AI007540-14
Organisme : Bill and Melinda Gates Foundation
ID : OPP1078791
Organisme : Agricultural Research Service
ID : 59-5348-4-001
Références
Biol Direct. 2016 Aug 04;11:36
pubmed: 27492357
Bioinformatics. 2011 Sep 1;27(17):2325-9
pubmed: 21697122
Nucleic Acids Res. 1997 Mar 1;25(5):955-64
pubmed: 9023104
Cell. 2010 Dec 10;143(6):1018-29
pubmed: 21145465
Bioinformatics. 2017 Feb 1;33(3):444-446
pubmed: 28158668
BMC Genomics. 2013 Apr 19;14:267
pubmed: 23601558
PLoS Negl Trop Dis. 2018 May 24;12(5):e0006137
pubmed: 29795551
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Bull World Health Organ. 1977;55(2-3):205-9
pubmed: 412601
Science. 2010 Feb 12;327(5967):822-5
pubmed: 20150490
Curr Protoc Bioinformatics. 2011 Sep;Chapter 4:Unit 4.6.1-10
pubmed: 21901742
Pharmacology. 1981;23(3):171-5
pubmed: 7025027
Infect Immun. 2012 Mar;80(3):1267-73
pubmed: 22202119
Bioinformatics. 2012 Jan 15;28(2):160-6
pubmed: 22121156
Nature. 2015 Apr 16;520(7547):378-82
pubmed: 25624101
Bioinformatics. 2007 Mar 15;23(6):673-9
pubmed: 17237039
Genome Biol. 2006;7 Suppl 1:S10.1-12
pubmed: 16925832
Vet Rec. 1983 Aug 27;113(9):192-8
pubmed: 6415893
Sci Rep. 2020 Mar 4;10(1):3982
pubmed: 32132598
PLoS One. 2009;4(3):e4839
pubmed: 19325907
mBio. 2019 Feb 19;10(1):
pubmed: 30782661
Nat Biotechnol. 2011 May 15;29(7):644-52
pubmed: 21572440
Science. 2005 Jul 1;309(5731):134-7
pubmed: 15994558
Nat Biotechnol. 2005 Sep;23(9):1089-91
pubmed: 16151400
Nucleic Acids Res. 2000 Jan 1;28(1):235-42
pubmed: 10592235
Genomics. 1997 Nov 15;46(1):37-45
pubmed: 9403056
PLoS Genet. 2009 Oct;5(10):e1000612
pubmed: 19855822
PLoS One. 2018 Oct 10;13(10):e0204047
pubmed: 30303978
Annu Rev Microbiol. 2017 Sep 8;71:625-641
pubmed: 28697665
Parasitology. 2015 Feb;142 Suppl 1:S57-70
pubmed: 25257746
Immunity. 2010 Oct 29;33(4):530-41
pubmed: 21029963
Infect Immun. 1988 Feb;56(2):462-7
pubmed: 3123392
PLoS Negl Trop Dis. 2015 Aug 14;9(8):e0003933
pubmed: 26273826
Nucleic Acids Res. 2005 Sep 25;33(17):5503-11
pubmed: 16186131
BMC Genomics. 2016 Feb 20;17:128
pubmed: 26896950
RNA. 2005 Apr;11(4):365-70
pubmed: 15703443
Genome Res. 2012 May;22(5):925-38
pubmed: 22415456
Glycobiology. 2019 May 1;29(5):385-396
pubmed: 30835280
N Engl J Med. 2007 Sep 6;357(10):1018-27
pubmed: 17804846
Int J Parasitol. 2013 Feb;43(2):173-80
pubmed: 23178997
BMC Genomics. 2011 Nov 30;12:587
pubmed: 22129310
J Biol Chem. 2019 Jan 25;294(4):1104-1125
pubmed: 30463938
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13421-6
pubmed: 19666543
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30
pubmed: 24288371
Parasitology. 1995 Jul;111 ( Pt 1):39-49
pubmed: 7609989
Mol Cell Biol. 1997 Mar;17(3):1666-73
pubmed: 9032293
Mol Cell Proteomics. 2008 May;7(5):891-910
pubmed: 18187410
Genome Res. 2003 Sep;13(9):2178-89
pubmed: 12952885
Genome Res. 2017 Jun;27(6):1074-1086
pubmed: 28416533
Clin Infect Dis. 2018 Jul 18;67(3):323-326
pubmed: 29688342
Malar J. 2015 Oct 31;14:427
pubmed: 26520586
Semin Cell Dev Biol. 2015 May;41:121-8
pubmed: 25475176
Mol Biol Evol. 2005 Apr;22(4):1053-66
pubmed: 15659557
Genome Res. 2009 Sep;19(9):1630-8
pubmed: 19570905
Eukaryot Cell. 2010 Feb;9(2):228-41
pubmed: 19783771
Mol Biochem Parasitol. 2008 Feb;157(2):169-78
pubmed: 18096254
Bull World Health Organ. 1980;58(3):445-8
pubmed: 6998592
PLoS One. 2018 May 8;13(5):e0196875
pubmed: 29738531
Curr Opin Immunol. 2011 Jun;23(3):436-43
pubmed: 21570272
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7
pubmed: 15980513
Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203
pubmed: 27899674
Genome Biol. 2013 Apr 25;14(4):R36
pubmed: 23618408
Front Microbiol. 2018 Dec 18;9:3117
pubmed: 30619191
J Autoimmun. 2015 Feb;57:1-13
pubmed: 25578468
Genome Biol. 2013 Aug 30;14(8):R93
pubmed: 24000942
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1548-53
pubmed: 15665075
Genome Biol. 2008 Jan 11;9(1):R7
pubmed: 18190707
Curr Opin Struct Biol. 2011 Oct;21(5):576-82
pubmed: 21978957
Exp Parasitol. 1981 Dec;52(3):297-302
pubmed: 7032961
Pharmacology. 1981;23(3):165-70
pubmed: 7025026
Science. 2005 Jul 1;309(5731):131-3
pubmed: 15994557
Nucleic Acids Res. 2003 Jan 1;31(1):371-3
pubmed: 12520025
Nucleic Acids Res. 2007;35(9):3100-8
pubmed: 17452365
Nat Rev Genet. 2012 Apr 18;13(5):329-42
pubmed: 22510764
BMC Genomics. 2009 Jul 15;10:312
pubmed: 19602295
PLoS One. 2016 May 19;11(5):e0156004
pubmed: 27195791
Cell. 2016 Sep 8;166(6):1423-1435.e12
pubmed: 27594426
BMC Bioinformatics. 2004 May 14;5:59
pubmed: 15144565
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3286-91
pubmed: 16492763