How clay particulates affect flow cessation and the coiling stability of yield stress-matched cementing suspensions.
Journal
Soft matter
ISSN: 1744-6848
Titre abrégé: Soft Matter
Pays: England
ID NLM: 101295070
Informations de publication
Date de publication:
29 Apr 2020
29 Apr 2020
Historique:
pubmed:
3
4
2020
medline:
3
4
2020
entrez:
3
4
2020
Statut:
ppublish
Résumé
The remarkable increase in the flow resistance of dense suspensions can hinder 3D-printing processes on account of flow cessation in the extruder, and filament fragility/rupture following deposition. Understanding the nature of rheological changes that occur is critical to manipulate flow conditions or to dose flow modifiers for 3D-printing. Therefore, this paper elucidates the influences of clay particulates on controlling flow cessation and the shape stability of dense cementing suspensions that typically feature poor printability. A rope coiling method was implemented with varying stand-off distances to probe the buckling stability and tendency to fracture of dense suspensions that undergo stretching and bending during deposition. The contributions of flocculation and short-term percolation due to the kinetics of structure formation to deformation rate were deconvoluted using a stepped isostress method. It is shown that the shear stress indicates a divergence with a power-law scaling when the particle volume fraction approaches the jamming limit; φ → φj ≈ φmax. Such a power-law divergence of the shear stress decreases by a factor of 10 with increasing clay dosage. Such behavior in clay-containing suspensions arises from a decrease in the relative packing fraction (φ/φmax) and the formation of fractally-architected aggregates with stronger interparticle interactions, whose uniform arrangement controls flow cessation in the extruder and suspension homogeneity, thereby imparting greater buckling stability. The outcomes offer new insights for assessing/improving the extrudability and printability behavior during slurry-based 3D-printing process.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM