The influence of phonon softening on the superconducting critical temperature of Sn nanostructures.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Mar 2020
31 Mar 2020
Historique:
received:
30
09
2019
accepted:
12
03
2020
entrez:
3
4
2020
pubmed:
3
4
2020
medline:
3
4
2020
Statut:
epublish
Résumé
The increase in superconducting transition temperature (T
Identifiants
pubmed: 32235906
doi: 10.1038/s41598-020-62617-4
pii: 10.1038/s41598-020-62617-4
pmc: PMC7109077
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5729Subventions
Organisme : U.S. Department of Energy (DOE)
ID : DE-AC02-06CH1357
Références
Jesser, W. A theory of pseudomorphism in thin films. Mat. Sci. Eng. A-Struct. 4(5), 279–286 (1969).
doi: 10.1016/0025-5416(69)90004-4
Houben, K. In situ study of the α -sn to β -sn phase transition in low-dimensional systems: Phonon behavior and thermodynamic properties. Phys. Rev. B 100 075408 (Aug 2019).
Abeles, B., Cohen, R. W. & Cullen, G. W. Enhancement of superconductivity in metal films. Phys. Rev. Lett. 17 632–634 (Sep 1966).
Strongin, M. et al. Enhanced superconductivity in layered metallic films. Phys. Rev. Lett. 21(18), 1320–1323 (1968).
doi: 10.1103/PhysRevLett.21.1320
Knorr, K. & Barth, N. Superconductivity and phonon spectra of disordered thin films. Solid State Commun. 8(13), 1085–1088 (1970).
doi: 10.1016/0038-1098(70)90265-6
Jankovic, L. et al. Carbon nanotubes encapsulating superconducting single-crystalline tin nanowires. Nano lett. 6(6), 1131–1135 (2006).
doi: 10.1021/nl0602387
Tian, M. et al. Dissipation in quasi-one-dimensional superconducting single-crystal Sn nanowires. Phys. Rev. B 71(10), 104521 (2005).
doi: 10.1103/PhysRevB.71.104521
Strongin, M., Thompson, R. S., Kammerer, O. F. & Crow Destruction of superconductivity in disordered near-monolayer films. Phys. Rev. B 1(3), 1078 (1970).
doi: 10.1103/PhysRevB.1.1078
Felsch, W. & GloverChange, R. E. of superconducting transition temperature caused by adsorption of noble gases. Solid State Commun. 10(11), 1033–1037 (1972).
doi: 10.1016/0038-1098(72)90890-3
Houben, K. et al. Coexistence of superconductivity and ferromagnetism in cluster-assembled Sn-Co nanocomposites. J. Alloys Compd. 637, 509–516 (2015).
doi: 10.1016/j.jallcom.2015.03.007
Tamura, A. Phonon effect on enhancement and reduction of the superconducting transition temperature of a small particle and amorphous thin films. Z. Phys. D. At., Mol. Clusters 26(1), 240–242 (1993).
doi: 10.1007/BF01425677
Strongin, M. Superconductivity in thin films and small particles. Physica 55, 155–172 (1971).
doi: 10.1016/0031-8914(71)90249-7
Allen, P. B. Effect of soft phonons on superconductivity: A re-evaluation and a positive case for Nb3Sn. Solid State Commun. 14(10), 937–940 (1974).
doi: 10.1016/0038-1098(74)90397-4
Leavens, C. R. & Fenton, E. W. Superconductivity of small particles. Phys. Rev. B 24(9), 5086 (1981).
doi: 10.1103/PhysRevB.24.5086
Parmenter, R. H. Size effect in a granular superconductor. Phys. Rev. 166(2), 392 (1968).
doi: 10.1103/PhysRev.166.392
Chen, T. T., Chen, J. T., Leslie, J. D. & Smith, H. J. T. Phonon spectrum of superconducting amorphous bismuth and gallium by electron tunneling. Phys. Rev. Lett. 22(11), 526 (1969).
doi: 10.1103/PhysRevLett.22.526
Guo, Y. et al. Superconductivity modulated by quantum size effects. Science 306(5703), 1915–1917 (2004).
doi: 10.1126/science.1105130
Chen, B., Zhu, Z. & Xie, X. C. Quantum size effects in thermodynamic superconducting properties of ultrathin films. Phys. Rev. B 74(13), 132504 (2006).
doi: 10.1103/PhysRevB.74.132504
Komnik, Y. F., Bukhshtab, E. I. & Mankovsky, K. K. Quantum size effect in superconducting tin films. Sov. Phys. JETP 30(5), 807–812 (1970).
Shanenko, A. A., Croitoru, M. D. & Peeters, F. M. Quantum-size effects on Tc in superconducting nanofilms. EPL (Europhysics Letters) 76(3), 498 (2006).
doi: 10.1209/epl/i2006-10274-6
Croitoru, M. D., Shanenko, A. A. & Peeters, F. M. Dependence of superconducting properties on the size and shape of a nanoscale superconductor: From nanowire to film. Phys. Rev. B 76(2), 024511 (2007).
doi: 10.1103/PhysRevB.76.024511
Shanenko, A. A., Croitoru, M. D., Zgirski, M., Peeters, F. M. & Arutyunov, K. Size-dependent enhancement of superconductivity in Al and Sn nanowires: Shape-resonance effect. Phys. Rev. B 74(5), 052502 (2006).
doi: 10.1103/PhysRevB.74.052502
Bose, S. et al. Observation of shell effects in superconducting nanoparticles of sn. Nat. Mater. 9(7), 550–554 (2010).
doi: 10.1038/nmat2768
Bose, S. et al. Competing effects of surface phonon softening and quantum size effects on the superconducting properties of nanostructured Pb. J. Phys.: Condens. Matter 21(20), 205702 (2009).
Garland, J. W., Bennemann, K. H. & Mueller, F. M. Effect of lattice disorder on the superconducting transition temperature. Phys. Rev. Lett. 21(18), 1315 (1968).
doi: 10.1103/PhysRevLett.21.1315
Hwang, E. H., Sarma, S. D. & Stroscio, M. A. Role of confined phonons in thin-film superconductivity. Phys. Rev. B 61(13), 8659 (2000).
doi: 10.1103/PhysRevB.61.8659
Bose, S., Raychaudhuri, P., Banerjee, R., Vasa, P. & Ayyub, P. Mechanism of the size dependence of the superconducting transition of nanostructured Nb. Phys. Rev. Lett. 95(14), 147003 (2005).
doi: 10.1103/PhysRevLett.95.147003
Li, W. H., Yang, C. C., Tsao, F. C. & Lee, K. C. Quantum size effects on the superconducting parameters of zero-dimensional pb nanoparticles. Phys. Rev. B 68(18), 184507 (2003).
doi: 10.1103/PhysRevB.68.184507
Croitoru M. et al. Phonon limited superconducting correlations in metallic nanograins. Sci. Rep. 5 (2015).
Croitoru, M. et al. Influence of disorder on superconducting correlations in nanoparticles. J. Supercond. Nov. Magn. 29(3), 605–609 (2016).
doi: 10.1007/s10948-015-3319-8
Lozano, D. P. et al. Experimental observation of electron-phonon coupling enhancement in sn nanowires caused by phonon confinement effects. Phys. Rev. B 99 064512 (Feb 2019).
Houben, K. et al. Lattice dynamics in sn nanoislands and cluster-assembled films. Phys. Rev. B 95(15), 155413 (2017).
doi: 10.1103/PhysRevB.95.155413
Cuppens, J., Romero, C. P., Lievens, P. & Van Bael, M. J. Superconductivity in Pb cluster assembled systems with different degrees of coagulation. Phys. Rev. B 81(6), 064517 (2010).
doi: 10.1103/PhysRevB.81.064517
Ashcroft, N. W. & Mermin, D. Introduction to solid state physics. Saunders, Philadelphia (1976).
Tinkham, M. Introduction to superconductivity. Courier Dover Publications (2012).
Serin, B., Reynolds, C. A. & Lohman, C. The isotope effect in superconductivity. ii. tin and lead. Phys. Rev. 86 162–164 (Apr 1952).
Markowitz, D. & Kadanoff, L. P. Effect of impurities upon critical temperature of anisotropic superconductors. Phys. Rev. 131(2), 563 (1963).
doi: 10.1103/PhysRev.131.563
Richards, P. L. Anisotropy of the superconducting energy gap in pure and impure tin. Phys. Rev. Lett. 7(11), 412 (1961).
doi: 10.1103/PhysRevLett.7.412
Clem, J. R. Effects of energy gap anisotropy in pure superconductors. ANN. PHYS. 40(2), 268–295 (1966).
doi: 10.1016/0003-4916(66)90028-5
Townsend, P. & Sutton, J. Investigation by electron tunneling of the superconducting energy gaps in Nb, Ta, Sn, and Pb. Phys. Rev. 128(2), 591 (1962).
doi: 10.1103/PhysRev.128.591
Orr, B. G., Jaeger, H. M. & Goldman, A. M. Transition-temperature oscillations in thin superconducting films. Phys. Rev. Lett. 53(21), 2046 (1984).
doi: 10.1103/PhysRevLett.53.2046
Paskin, A. & Strongin, M. Comment on ransition-temperature oscillations in thin superconducting films. Phys. Rev. Lett. 55(1), 139 (1985).
doi: 10.1103/PhysRevLett.55.139
Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12 905–922 (Aug 1975).
McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167 331–344, (Mar 1968).
Kresin, V. Z. On the critical temperature for any strength of the electron-phonon coupling. Phys. Lett. A 122(8), 434–438 (1987).
doi: 10.1016/0375-9601(87)90744-4
Rowell, J. M., McMillan, W. L. & Feldmann, W. L. Superconductivity and lattice dynamics of white tin. Phys. Rev. B 3(12), 4065 (1971).
doi: 10.1103/PhysRevB.3.4065
Markiewicz, W. D. Elastic stiffness model for the critical temperature Tc of Nb
doi: 10.1016/j.cryogenics.2004.03.019
Couet, S. et al. Interplay between lattice dynamics and superconductivity in Nb3Sn thin films. Phys. Rev. B 88(4), 045437 (2013).
doi: 10.1103/PhysRevB.88.045437
Morel, P. & Anderson, P. W. Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev. 125(4), 1263 (1962).
doi: 10.1103/PhysRev.125.1263
Poole, C. K., Farach, H. A. & Creswick, R. J. Handbook of superconductivity. Academic Press (1999).
Vandamme, N., Janssens, E., Vanhoutte, F., Lievens, P. & Van Haesendonck, C. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates. J. Phys.: Condens. Matter 15(42), S2983 (2003).
Horcas, I. et al. Wsxm: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78(1), 013705 (2007).
doi: 10.1063/1.2432410
Röhlsberger, R. Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications. No. 208, (Springer, 2004).
Chumakov, A. I. & Sturhahn, W. Experimental aspects of inelastic nuclear resonance scattering. Hyperfine Interact. 123(1–4), 781–808 (1999).
doi: 10.1023/A:1017052730094
Sturhahn, W. et al. Phonon density of states measured by inelastic nuclear resonant scattering. Phys. Rev. Lett. 74(19), 3832 (1995).
doi: 10.1103/PhysRevLett.74.3832
Sturhahn, W. CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data. Hyperfine Interact. 125(1–4), 149–172 (2000).
doi: 10.1023/A:1012681503686