Characterization of C. elegans Chondroitin Proteoglycans and Their Large Functional and Structural Heterogeneity; Evolutionary Aspects on Structural Differences Between Humans and the Nematode.

Attachment site Caenorhabditis elegans Chondroitin Chondroitin sulfate Core protein Glycosaminoglycan Metazoan evolution Protein functional domains Proteoglycan

Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2021
Historique:
pubmed: 19 3 2020
medline: 4 3 2021
entrez: 19 3 2020
Statut: ppublish

Résumé

Proteoglycans regulate important cellular pathways in essentially all metazoan organisms. While considerable effort has been devoted to study structural and functional aspects of proteoglycans in vertebrates, the knowledge of the core proteins and proteoglycan-related functions in invertebrates is relatively scarce, even for C.elegans. This nematode produces a large amount of non-sulfated chondroitin in addition to small amount of low-sulfated chondroitin chains (Chn and CS chains, respectively). Until recently, 9 chondroitin core proteins (CPGs) had been identified in C.elegans, none of which showed any homology to vertebrate counterparts or to other invertebrate core proteins. By using a glycoproteomic approach, we recently characterized the chondroitin glycoproteome of C.elegans, resulting in the identification of 15 novel CPG core proteins in addition to the 9 previously established. Three of the novel core proteins displayed homology to human proteins, indicating that CPG and CSPG core proteins may be more conserved throughout evolution than previously perceived. Bioinformatic analysis of the primary amino acid sequences revealed that the core proteins contained a broad range of functional domains, indicating that specialization of proteoglycan-mediated functions may have evolved early in metazoan evolution. This review specifically discusses our recent data in relation to previous knowledge of core proteins and GAG-attachment sites in Chn and CS proteoglycans of C.elegans and humans, and point out both converging and diverging aspects of proteoglycan evolution.

Identifiants

pubmed: 32185697
doi: 10.1007/5584_2020_485
doi:

Substances chimiques

Chondroitin Sulfate Proteoglycans 0
Proteoglycans 0
Chondroitin Sulfates 9007-28-7

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

155-170

Références

Ackley BD, Crew JR, Elamaa H, Pihlajaniemi T, Kuo CJ, Kramer JM (2001) The NC1/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance. J Cell Biol 152(6):1219–1232
doi: 10.1083/jcb.152.6.1219
Ackley BD, Kang SH, Crew JR, Suh C, Jin Y, Kramer JM (2003) The basement membrane components nidogen and type XVIII collagen regulate organization of neuromuscular junctions in Caenorhabditis elegans. J Neurosci 23(9):3577–3587
doi: 10.1523/JNEUROSCI.23-09-03577.2003
Adams JC, Tucker RP (2000) The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn 218(2):280–299. https://doi.org/10.1002/(SICI)1097-0177(200006)218:2<280::AID-DVDY4>3.0.CO;2-0
doi: 10.1002/(SICI)1097-0177(200006)218:2<280::AID-DVDY4>3.0.CO;2-0 pubmed: 10842357
Antoshechkin I, Sternberg PW (2007) The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet 8(7):518–532. https://doi.org/10.1038/nrg2105
doi: 10.1038/nrg2105 pubmed: 17549065
Aono S, Tokita Y, Shuo T, Yamauchi S, Matsui F, Nakanishi K, Hirano K, Sano M, Oohira A (2004) Glycosylation site for chondroitin sulfate on the neural part-time proteoglycan, neuroglycan C. J Biol Chem 279(45):46536–46541. https://doi.org/10.1074/jbc.M403263200
doi: 10.1074/jbc.M403263200 pubmed: 15331613
Baeg GH, Lin X, Khare N, Baumgartner S, Perrimon N (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128(1):87–94
pubmed: 11092814
Bartlett AH, Park PW (2010) Proteoglycans in host-pathogen interactions: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 12:e5. https://doi.org/10.1017/S1462399409001367
doi: 10.1017/S1462399409001367 pubmed: 20113533 pmcid: 4634875
Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777. https://doi.org/10.1146/annurev.biochem.68.1.729
doi: 10.1146/annurev.biochem.68.1.729 pubmed: 10872465
Berninsone P, Hwang HY, Zemtseva I, Horvitz HR, Hirschberg CB (2001) SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose. Proc Natl Acad Sci U S A 98(7):3738–3743. https://doi.org/10.1073/pnas.061593098
doi: 10.1073/pnas.061593098 pubmed: 11259660 pmcid: 31122
Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037. https://doi.org/10.1038/nature05817
doi: 10.1038/nature05817 pubmed: 17460664
Blanchette CR, Perrat PN, Thackeray A, Benard CY (2015) Glypican is a modulator of Netrin-mediated axon guidance. PLoS Biol 13(7):e1002183. https://doi.org/10.1371/journal.pbio.1002183
doi: 10.1371/journal.pbio.1002183 pubmed: 26148345 pmcid: 4493048
Blanchette CR, Thackeray A, Perrat PN, Hekimi S, Benard CY (2017) Functional requirements for Heparan sulfate biosynthesis in morphogenesis and nervous system development in C. elegans. PLoS Genet 13(1):e1006525. https://doi.org/10.1371/journal.pgen.1006525
doi: 10.1371/journal.pgen.1006525 pubmed: 28068429 pmcid: 5221758
Bourdon MA, Oldberg A, Pierschbacher M, Ruoslahti E (1985) Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA. Proc Natl Acad Sci U S A 82(5):1321–1325. https://doi.org/10.1073/pnas.82.5.1321
doi: 10.1073/pnas.82.5.1321 pubmed: 3919394 pmcid: 397252
Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, SB MM (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640. https://doi.org/10.1038/416636a
doi: 10.1038/416636a pubmed: 11948352
Bulik DA, Wei G, Toyoda H, Kinoshita-Toyoda A, Waldrip WR, Esko JD, Robbins PW, Selleck SB (2000) sqv-3, -7, and -8, a set of genes affecting morphogenesis in Caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 97(20):10838–10843. https://doi.org/10.1073/pnas.97.20.10838
doi: 10.1073/pnas.97.20.10838 pubmed: 11005858 pmcid: 27110
Chang YH, Sun YH (2014) Carrier of Wingless (Cow), a secreted heparan sulfate proteoglycan, promotes extracellular transport of Wingless. PLoS One 9(10):e111573. https://doi.org/10.1371/journal.pone.0111573
doi: 10.1371/journal.pone.0111573 pubmed: 25360738 pmcid: 4216105
Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, Gallagher JT, Jones EY, Flanagan JG, Aricescu AR (2011) Proteoglycan-specific molecular switch for RPTPsigma clustering and neuronal extension. Science 332(6028):484–488. https://doi.org/10.1126/science.1200840
doi: 10.1126/science.1200840 pubmed: 21454754 pmcid: 3154093
Consortium CeS (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282(5396):2012–2018
doi: 10.1126/science.282.5396.2012
Couchman JR, Pataki CA (2012) An introduction to proteoglycans and their localization. J Histochem Cytochem 60(12):885–897. https://doi.org/10.1369/0022155412464638
doi: 10.1369/0022155412464638 pubmed: 23019015 pmcid: 3527888
Csoka AB, Stern R (2013) Hypotheses on the evolution of hyaluronan: a highly ironic acid. Glycobiology 23(4):398–411. https://doi.org/10.1093/glycob/cws218
doi: 10.1093/glycob/cws218 pubmed: 23315448 pmcid: 3581078
Dierker T, Shao C, Haitina T, Zaia J, Hinas A, Kjellen L (2016) Nematodes join the family of chondroitin sulfate-synthesizing organisms: identification of an active chondroitin sulfotransferase in Caenorhabditis elegans. Sci Rep 6:34662. https://doi.org/10.1038/srep34662
doi: 10.1038/srep34662 pubmed: 27703236 pmcid: 5050403
Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108(2):169–173. https://doi.org/10.1172/JCI13530
doi: 10.1172/JCI13530 pubmed: 11457867 pmcid: 203033
Esko JD, Zhang L (1996) Influence of core protein sequence on glycosaminoglycan assembly. Curr Opin Struct Biol 6(5):663–670
doi: 10.1016/S0959-440X(96)80034-0
Gagneux P, Aebi M, Varki A (2015) Evolution of glycan diversity. In: Varki A, Cummings RD et al (eds) Essentials of Glycobiology, Cold Spring Harbor, pp 253–264. https://doi.org/10.1101/glycobiology.3e.020
Gesteira TF, Coulson-Thomas VJ, Ogata FT, Farias EH, Cavalheiro RP, de Lima MA, Cunha GL, Nakayasu ES, Almeida IC, Toma L, Nader HB (2011) A novel approach for the characterisation of proteoglycans and biosynthetic enzymes in a snail model. Biochim Biophys Acta 1814(12):1862–1869. https://doi.org/10.1016/j.bbapap.2011.07.024
doi: 10.1016/j.bbapap.2011.07.024 pubmed: 21854878
Hascall VC, Wang A, Tammi M, Oikari S, Tammi R, Passi A, Vigetti D, Hanson RW, Hart GW (2014) The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc. Matrix Biol 35:14–17. https://doi.org/10.1016/j.matbio.2014.01.014
doi: 10.1016/j.matbio.2014.01.014 pubmed: 24486448 pmcid: 4039572
Herman T, Horvitz HR (1999) Three proteins involved in Caenorhabditis elegans vulval invagination are similar to components of a glycosylation pathway. Proc Natl Acad Sci U S A 96(3):974–979. https://doi.org/10.1073/pnas.96.3.974
doi: 10.1073/pnas.96.3.974 pubmed: 9927678 pmcid: 15335
Herman T, Hartwieg E, Horvitz HR (1999) sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc Natl Acad Sci U S A 96(3):968–973. https://doi.org/10.1073/pnas.96.3.968
doi: 10.1073/pnas.96.3.968 pubmed: 9927677 pmcid: 15334
Hrus A, Lau G, Hutter H, Schenk S, Ferralli J, Brown-Luedi M, Chiquet-Ehrismann R, Canevascini S (2007) C. elegans agrin is expressed in pharynx, IL1 neurons and distal tip cells and does not genetically interact with genes involved in synaptogenesis or muscle function. PLoS One 2(8):e731. https://doi.org/10.1371/journal.pone.0000731
doi: 10.1371/journal.pone.0000731 pubmed: 17710131 pmcid: 1939731
Hu HZ, Granger N, Pai SB, Bellamkonda RV, Jeffery ND (2018) Therapeutic efficacy of microtube-embedded chondroitinase ABC in a canine clinical model of spinal cord injury. Brain 141(4):1017–1027. https://doi.org/10.1093/brain/awy007
doi: 10.1093/brain/awy007 pubmed: 29444239
Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, Hedgecock EM (2000) Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287(5455):989–994. https://doi.org/10.1126/science.287.5455.989
doi: 10.1126/science.287.5455.989 pubmed: 10669422
Hwang HY, Horvitz HR (2002) The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated. Proc Natl Acad Sci U S A 99(22):14224–14229. https://doi.org/10.1073/pnas.172522499
doi: 10.1073/pnas.172522499 pubmed: 12391315 pmcid: 137865
Hwang HY, Olson SK, Brown JR, Esko JD, Horvitz HR (2003) The Caenorhabditis elegans genes sqv-2 and sqv-6, which are required for vulval morphogenesis, encode glycosaminoglycan galactosyltransferase II and xylosyltransferase. J Biol Chem 278(14):11735–11738. https://doi.org/10.1074/jbc.C200518200
doi: 10.1074/jbc.C200518200 pubmed: 12584198
Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55. https://doi.org/10.1016/j.matbio.2015.02.003
doi: 10.1016/j.matbio.2015.02.003 pubmed: 4859157 pmcid: 4859157
Izumikawa T, Kitagawa H, Mizuguchi S, Nomura KH, Nomura K, Tamura J, Gengyo-Ando K, Mitani S, Sugahara K (2004) Nematode chondroitin polymerizing factor showing cell−/organ-specific expression is indispensable for chondroitin synthesis and embryonic cell division. J Biol Chem 279(51):53755–53761. https://doi.org/10.1074/jbc.M409615200
doi: 10.1074/jbc.M409615200 pubmed: 15485872
Izumikawa T, Dejima K, Watamoto Y, Nomura KH, Kanaki N, Rikitake M, Tou M, Murata D, Yanagita E, Kano A, Mitani S, Nomura K, Kitagawa H (2016) Chondroitin 4-O-Sulfotransferase is indispensable for Sulfation of chondroitin and plays an important role in maintaining Normal life span and oxidative stress responses in nematodes. J Biol Chem 291(44):23294–23304. https://doi.org/10.1074/jbc.M116.757328
doi: 10.1074/jbc.M116.757328 pubmed: 27645998 pmcid: 5087745
Joshi HJ, Narimatsu Y, Schjoldager KT, Tytgat HLP, Aebi M, Clausen H, Halim A (2018) SnapShot: O-Glycosylation pathways across kingdoms. Cell 172(3):632–632 e632. https://doi.org/10.1016/j.cell.2018.01.016
doi: 10.1016/j.cell.2018.01.016 pubmed: 29373833
Karamanos KK, Aletras AJ, Antonopoulos CA, Hjerpe A, Tsiganos CP (1990) Chondroitin proteoglycans from squid skin. Isolation, characterization and immunological studies. Eur J Biochem 192(1):33–38. https://doi.org/10.1111/j.1432-1033.1990.tb19191.x
doi: 10.1111/j.1432-1033.1990.tb19191.x pubmed: 2401297
Katagiri Y, Morgan AA, Yu P, Bangayan NJ, Junka R, Geller HM (2018) Identification of novel binding sites for heparin in receptor protein-tyrosine phosphatase (RPTPsigma): implications for proteoglycan signaling. J Biol Chem 293(29):11639–11647. https://doi.org/10.1074/jbc.RA118.003081
doi: 10.1074/jbc.RA118.003081 pubmed: 29880643 pmcid: 6065195
King SLJH, Schjoldager KT, Halim A, Madsen TD, Dzielgiel MH, Woetmann A, Vakhrushev SY, Wandall H (2017) Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Adv 1(7):429–442
doi: 10.1182/bloodadvances.2016002121
Kjellen L, Lindahl U (2018) Specificity of glycosaminoglycan-protein interactions. Curr Opin Struct Biol 50:101–108. https://doi.org/10.1016/j.sbi.2017.12.011
doi: 10.1016/j.sbi.2017.12.011 pubmed: 29455055
Kjellen L, Pettersson I, Lillhager P, Steen ML, Pettersson U, Lehtonen P, Karlsson T, Ruoslahti E, Hellman L (1989) Primary structure of a mouse mastocytoma proteoglycan core protein. Biochem J 263(1):105–113. https://doi.org/10.1042/bj2630105
doi: 10.1042/bj2630105 pubmed: 2532501 pmcid: 1133396
Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174(3):323–327. https://doi.org/10.1083/jcb.200604035
doi: 10.1083/jcb.200604035 pubmed: 16880267 pmcid: 2064228
Le Jan S, Hayashi M, Kasza Z, Eriksson I, Bishop JR, Weibrecht I, Heldin J, Holmborn K, Jakobsson L, Soderberg O, Spillmann D, Esko JD, Claesson-Welsh L, Kjellen L, Kreuger J (2012) Functional overlap between chondroitin and heparan sulfate proteoglycans during VEGF-induced sprouting angiogenesis. Arterioscler Thromb Vasc Biol 32(5):1255–1263. https://doi.org/10.1161/ATVBAHA.111.240622
doi: 10.1161/ATVBAHA.111.240622 pubmed: 22345168 pmcid: 3331918
Ledin J, Staatz W, Li JP, Gotte M, Selleck S, Kjellen L, Spillmann D (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279(41):42732–42741. https://doi.org/10.1074/jbc.M405382200
doi: 10.1074/jbc.M405382200 pubmed: 15292174
Li F, Shi W, Capurro M, Filmus J (2011) Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling. J Cell Biol 192(4):691–704. https://doi.org/10.1083/jcb.201008087
doi: 10.1083/jcb.201008087 pubmed: 21339334 pmcid: 3044117
Lindahl U (2014) A personal voyage through the proteoglycan field. Matrix Biol 35:3–7. https://doi.org/10.1016/j.matbio.2014.01.001
doi: 10.1016/j.matbio.2014.01.001 pubmed: 24463261
Lindahl U, Couchman J, Kimata K, Esko JD (2015) Proteoglycans and Sulfated Glycosaminoglycans. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology, Cold Spring Harbor, pp 207–221. https://doi.org/10.1101/glycobiology.3e.017
Ly M, Leach FE 3rd, Laremore TN, Toida T, Amster IJ, Linhardt RJ (2011) The proteoglycan bikunin has a defined sequence. Nat Chem Biol 7(11):827–833. https://doi.org/10.1038/nchembio.673
doi: 10.1038/nchembio.673 pubmed: 21983600 pmcid: 3197799
Maduro MF (2017) Gut development in C. elegans. Semin Cell Dev Biol 66:3–11. https://doi.org/10.1016/j.semcdb.2017.01.001
doi: 10.1016/j.semcdb.2017.01.001 pubmed: 28065852
Mizumoto S, Ikegawa S, Sugahara K (2013) Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem 288(16):10953–10961. https://doi.org/10.1074/jbc.R112.437038
doi: 10.1074/jbc.R112.437038 pubmed: 23457301 pmcid: 3630846
Mizumoto S, Yamada S, Sugahara K (2015) Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins. Curr Opin Struct Biol 34:35–42. https://doi.org/10.1016/j.sbi.2015.06.004
doi: 10.1016/j.sbi.2015.06.004 pubmed: 26164146
Muir H (1958) The nature of the link between protein and carbohydrate of a chondroitin sulphate complex from hyaline cartilage. Biochem J 69(2):195–204. https://doi.org/10.1042/bj0690195
doi: 10.1042/bj0690195 pubmed: 13546166 pmcid: 1196538
Mulloy B, Hart GW, Stanley P (2009) Structural analysis of Glycans. In: Varki A, Cummings RD et al (eds) Essentials of Glycobiology, Cold Spring Harbor
Murdoch AD, Iozzo RV (1993) Perlecan: the multidomain heparan sulphate proteoglycan of basement membrane and extracellular matrix. Virchows Arch A Pathol Anat Histopathol 423(4):237–242. https://doi.org/10.1007/bf01606885
doi: 10.1007/bf01606885 pubmed: 8236820
Nadanaka S, Kitagawa H, Sugahara K (1998) Demonstration of the immature glycosaminoglycan tetrasaccharide sequence GlcAbeta1-3Galbeta1-3Galbeta1-4Xyl on recombinant soluble human alpha-thrombomodulin. An oligosaccharide structure on a “part-time” proteoglycan. J Biol Chem 273(50):33728–33734. https://doi.org/10.1074/jbc.273.50.33728
doi: 10.1074/jbc.273.50.33728 pubmed: 9837960
Nakato H, Li JP (2016) Functions of Heparan sulfate proteoglycans in development: insights from Drosophila models. Int Rev Cell Mol Biol 325:275–293. https://doi.org/10.1016/bs.ircmb.2016.02.008
doi: 10.1016/bs.ircmb.2016.02.008 pubmed: 27241223
Nakato H, Futch TA, Selleck SB (1995) The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121(11):3687–3702
pubmed: 8582281
Nasir W, Toledo AG, Noborn F, Nilsson J, Wang M, Bandeira N, Larson G (2016) SweetNET: a bioinformatics workflow for Glycopeptide MS/MS spectral analysis. J Proteome Res 15(8):2826–2840. https://doi.org/10.1021/acs.jproteome.6b00417
doi: 10.1021/acs.jproteome.6b00417 pubmed: 27399812
Nilsson J, Halim A, Grahn A, Larson G (2013) Targeting the glycoproteome. Glycoconj J 30(2):119–136. https://doi.org/10.1007/s10719-012-9438-6
doi: 10.1007/s10719-012-9438-6 pubmed: 22886069
Noborn F, Gomez Toledo A, Sihlbom C, Lengqvist J, Fries E, Kjellen L, Nilsson J, Larson G (2015) Identification of chondroitin sulfate linkage region glycopeptides reveals prohormones as a novel class of proteoglycans. Mol Cell Proteomics 14(1):41–49. https://doi.org/10.1074/mcp.M114.043703
doi: 10.1074/mcp.M114.043703 pubmed: 25326458
Noborn F, Gomez Toledo A, Green A, Nasir W, Sihlbom C, Nilsson J, Larson G (2016) Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans. Sci Rep 6:34537. https://doi.org/10.1038/srep34537
doi: 10.1038/srep34537 pubmed: 27694851 pmcid: 5046109
Noborn F, Gomez Toledo A, Nasir W, Nilsson J, Dierker T, Kjellen L, Larson G (2018) Expanding the chondroitin glycoproteome of Caenorhabditis elegans. J Biol Chem 293(1):379–389. https://doi.org/10.1074/jbc.M117.807800
doi: 10.1074/jbc.M117.807800 pubmed: 29138239
Olson SK, Bishop JR, Yates JR, Oegema K, Esko JD (2006) Identification of novel chondroitin proteoglycans in Caenorhabditis elegans: embryonic cell division depends on CPG-1 and CPG-2. J Cell Biol 173(6):985–994. https://doi.org/10.1083/jcb.200603003
doi: 10.1083/jcb.200603003 pubmed: 16785326 pmcid: 2063922
Olson SK, Greenan G, Desai A, Muller-Reichert T, Oegema K (2012) Hierarchical assembly of the eggshell and permeability barrier in C. elegans. J Cell Biol 198(4):731–748. https://doi.org/10.1083/jcb.201206008
doi: 10.1083/jcb.201206008 pubmed: 22908315 pmcid: 3514041
Oohira A, Shuo T, Tokita Y, Nakanishi K, Aono S (2004) Neuroglycan C, a brain-specific part-time proteoglycan, with a particular multidomain structure. Glycoconj J 21(1–2):53–57. https://doi.org/10.1023/B:GLYC.0000043748.90896.83
doi: 10.1023/B:GLYC.0000043748.90896.83 pubmed: 15467399
Pangalos MN, Efthimiopoulos S, Shioi J, Robakis NK (1995) The chondroitin sulfate attachment site of appican is formed by splicing out exon 15 of the amyloid precursor gene. J Biol Chem 270(18):10388–10391. https://doi.org/10.1074/jbc.270.18.10388
doi: 10.1074/jbc.270.18.10388 pubmed: 7737970
Park Y, Rangel C, Reynolds MM, Caldwell MC, Johns M, Nayak M, Welsh CJ, McDermott S, Datta S (2003) Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev Biol 253(2):247–257. https://doi.org/10.1016/s0012-1606(02)00019-2
doi: 10.1016/s0012-1606(02)00019-2 pubmed: 12645928
Pedersen ME, Snieckute G, Kagias K, Nehammer C, Multhaupt HA, Couchman JR, Pocock R (2013) An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state. Science 341(6152):1404–1408. https://doi.org/10.1126/science.1242528
doi: 10.1126/science.1242528 pubmed: 24052309
Ponighaus C, Ambrosius M, Casanova JC, Prante C, Kuhn J, Esko JD, Kleesiek K, Gotting C (2007) Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans. J Biol Chem 282(8):5201–5206. https://doi.org/10.1074/jbc.M611665200
doi: 10.1074/jbc.M611665200 pubmed: 17189265
Ramirez-Suarez NJ, Belalcazar HM, Salazar CJ, Beyaz B, Raja B, Nguyen KCQ, Celestrin K, Fredens J, Faergeman NJ, Hall DH, Bulow HE (2019) Axon-dependent patterning and maintenance of somatosensory dendritic Arbors. Dev Cell 48(2):229–244 e224. https://doi.org/10.1016/j.devcel.2018.12.015
doi: 10.1016/j.devcel.2018.12.015 pubmed: 30661986 pmcid: 6442679
Roden L, Smith R (1966) Structure of the neutral trisaccharide of the chondroitin 4-sulfate-protein linkage region. J Biol Chem 241(24):5949–5954
doi: 10.1016/S0021-9258(18)96362-3
Rogalski TM, Williams BD, Mullen GP, Moerman DG (1993) Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes Dev 7(8):1471–1484. https://doi.org/10.1101/gad.7.8.1471
doi: 10.1101/gad.7.8.1471 pubmed: 8393416
Saied-Santiago K, Bulow HE (2018) Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 247(1):54–74. https://doi.org/10.1002/dvdy.24555
doi: 10.1002/dvdy.24555 pubmed: 28736980
Sakamoto K, Ozaki T, Ko YC, Tsai CF, Gong Y, Morozumi M, Ishikawa Y, Uchimura K, Nadanaka S, Kitagawa H, Zulueta MML, Bandaru A, Tamura JI, Hung SC, Kadomatsu K (2019) Glycan sulfation patterns define autophagy flux at axon tip via PTPRsigma-cortactin axis. Nat Chem Biol 15(7):699–709. https://doi.org/10.1038/s41589-019-0274-x
doi: 10.1038/s41589-019-0274-x pubmed: 31061498
Salanti A, Clausen TM, Agerbaek MO, Al Nakouzi N, Dahlback M, Oo HZ, Lee S, Gustavsson T, Rich JR, Hedberg BJ, Mao Y, Barington L, Pereira MA, LoBello J, Endo M, Fazli L, Soden J, Wang CK, Sander AF, Dagil R, Thrane S, Holst PJ, Meng L, Favero F, Weiss GJ, Nielsen MA, Freeth J, Nielsen TO, Zaia J, Tran NL, Trent J, Babcook JS, Theander TG, Sorensen PH, Daugaard M (2015) Targeting human Cancer by a glycosaminoglycan binding malaria protein. Cancer Cell 28(4):500–514. https://doi.org/10.1016/j.ccell.2015.09.003
doi: 10.1016/j.ccell.2015.09.003 pubmed: 26461094 pmcid: 4790448
Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7). https://doi.org/10.1101/cshperspect.a004952
Schachter H (2004) Protein glycosylation lessons from Caenorhabditis elegans. Curr Opin Struct Biol 14(5):607–616. https://doi.org/10.1016/j.sbi.2004.09.005
doi: 10.1016/j.sbi.2004.09.005 pubmed: 15465323
Schatton J, Schubert M (1954) Isolation of a mucoprotein from cartilage. J Biol Chem 211:565–573
doi: 10.1016/S0021-9258(18)71147-2
Schulenburg H, Felix MA (2017) The natural biotic environment of Caenorhabditis elegans. Genetics 206(1):55–86. https://doi.org/10.1534/genetics.116.195511
doi: 10.1534/genetics.116.195511 pubmed: 28476862 pmcid: 5419493
Shao C, Shi X, White M, Huang Y, Hartshorn K, Zaia J (2013) Comparative glycomics of leukocyte glycosaminoglycans. FEBS J 280(10):2447–2461. https://doi.org/10.1111/febs.12231
doi: 10.1111/febs.12231 pubmed: 23480678
Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, He Z, Silver J, Flanagan JG (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326(5952):592–596. https://doi.org/10.1126/science.1178310
doi: 10.1126/science.1178310 pubmed: 19833921 pmcid: 2811318
Shim YH, Paik YK (2010) Caenorhabditis elegans proteomics comes of age. Proteomics 10(4):846–857. https://doi.org/10.1002/pmic.200900542
doi: 10.1002/pmic.200900542 pubmed: 20029841
Stern R (2003) Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology 13(12):105R–115R. https://doi.org/10.1093/glycob/cwg112
doi: 10.1093/glycob/cwg112 pubmed: 14514708
Sugiura N, Clausen TM, Shioiri T, Gustavsson T, Watanabe H, Salanti A (2016) Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library. Glycoconj J 33(6):985–994. https://doi.org/10.1007/s10719-016-9685-z
doi: 10.1007/s10719-016-9685-z pubmed: 27287227
Toyoda H, Kinoshita-Toyoda A, Selleck SB (2000) Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that tout-velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J Biol Chem 275(4):2269–2275
doi: 10.1074/jbc.275.4.2269
Vuong-Brender TT, Yang X, Labouesse M (2016) C. elegans embryonic morphogenesis. Curr Top Dev Biol 116:597–616. https://doi.org/10.1016/bs.ctdb.2015.11.012
doi: 10.1016/bs.ctdb.2015.11.012 pubmed: 26970644
Weigel PH, Hascall VC, Tammi M (1997) Hyaluronan synthases. J Biol Chem 272(22):13997–14000. https://doi.org/10.1074/jbc.272.22.13997
doi: 10.1074/jbc.272.22.13997 pubmed: 9206724
Weiss RJ, Esko JD, Tor Y (2017) Targeting heparin and heparan sulfate protein interactions. Org Biomol Chem 15(27):5656–5668. https://doi.org/10.1039/c7ob01058c
doi: 10.1039/c7ob01058c pubmed: 28653068 pmcid: 5567684
Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14(5):617–623
doi: 10.1016/S0955-0674(02)00375-7
Wilson IB (2004) The never-ending story of peptide O-xylosyltransferase. Cell Mol Life Sci 61(7–8):794–809. https://doi.org/10.1007/s00018-003-3278-2
doi: 10.1007/s00018-003-3278-2 pubmed: 15095004
Wilson IBH, Cummings RD, Aebi M (2015) Nematoda. In: Varki A, Cummings RD et al (eds) Essentials of Glycobiology, Cold Spring Harbor, pp 321–333. https://doi.org/10.1101/glycobiology.3e.025
Yamada S, Van Die I, Van den Eijnden DH, Yokota A, Kitagawa H, Sugahara K (1999) Demonstration of glycosaminoglycans in Caenorhabditis elegans. FEBS Lett 459(3):327–331. https://doi.org/10.1016/s0014-5793(99)01286-7
doi: 10.1016/s0014-5793(99)01286-7 pubmed: 10526159
Yamada S, Okada Y, Ueno M, Iwata S, Deepa SS, Nishimura S, Fujita M, Van Die I, Hirabayashi Y, Sugahara K (2002) Determination of the glycosaminoglycan-protein linkage region oligosaccharide structures of proteoglycans from Drosophila melanogaster and Caenorhabditis elegans. J Biol Chem 277(35):31877–31886. https://doi.org/10.1074/jbc.M205078200
doi: 10.1074/jbc.M205078200 pubmed: 12058048
Yamada S, Sugahara K, Ozbek S (2011) Evolution of glycosaminoglycans: comparative biochemical study. Commun Integr Biol 4(2):150–158. https://doi.org/10.4161/cib.4.2.14547
doi: 10.4161/cib.4.2.14547 pubmed: 21655428 pmcid: 3104567
Yanagishita M (1993) A brief history of proteoglycans. Experientia 49(5):366–368. https://doi.org/10.1007/bf01923581
doi: 10.1007/bf01923581 pubmed: 8500592
Zhang L, Esko JD (1994) Amino acid determinants that drive heparan sulfate assembly in a proteoglycan. J Biol Chem 269(30):19295–19299
doi: 10.1016/S0021-9258(17)32166-X
Zhang P, Lu H, Peixoto RT, Pines MK, Ge Y, Oku S, Siddiqui TJ, Xie Y, Wu W, Archer-Hartmann S, Yoshida K, Tanaka KF, Aricescu AR, Azadi P, Gordon MD, Sabatini BL, Wong ROL, Craig AM (2018) Heparan sulfate organizes neuronal synapses through Neurexin partnerships. Cell 174(6):1450–1464 e1423. https://doi.org/10.1016/j.cell.2018.07.002
doi: 10.1016/j.cell.2018.07.002 pubmed: 30100184 pmcid: 6173057
Zhu F, Li D, Chen K (2019) Structures and functions of invertebrate glycosylation. Open Biol 9(1):180232. https://doi.org/10.1098/rsob.180232
doi: 10.1098/rsob.180232 pubmed: 30958118 pmcid: 6367135

Auteurs

Fredrik Noborn (F)

Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.

Göran Larson (G)

Department of Laboratory Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. goran.larson@clinchem.gu.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH