Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages.
Cells, Cultured
Contrast Media
Drug Carriers
Fibrinolytic Agents
Gadolinium DTPA
/ adverse effects
Hepatocytes
/ drug effects
Humans
Inflammasomes
Liposomes
Macrophages
/ drug effects
Magnetic Resonance Imaging
NLR Family, Pyrin Domain-Containing 3 Protein
Nanoparticles
Phosphatidylethanolamines
/ adverse effects
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 03 2020
16 03 2020
Historique:
received:
17
09
2019
accepted:
18
12
2019
entrez:
18
3
2020
pubmed:
18
3
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd
Identifiants
pubmed: 32179785
doi: 10.1038/s41598-020-60284-z
pii: 10.1038/s41598-020-60284-z
pmc: PMC7075985
doi:
Substances chimiques
Contrast Media
0
Drug Carriers
0
Fibrinolytic Agents
0
Inflammasomes
0
Liposomes
0
NLR Family, Pyrin Domain-Containing 3 Protein
0
NLRP3 protein, human
0
Phosphatidylethanolamines
0
gadolinium phosphatidylethanolamine-DTPA
0
Gadolinium DTPA
K2I13DR72L
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4780Références
Cao, Y., Xu, L. J., Kuang, Y., Xiong, D. S. & Pei, R. J. Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J. Mater. Chem. B 5, 3431–3461 (2017).
doi: 10.1039/C7TB00382J
Rogosnitzky, M. & Branch, S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29, 365–376, https://doi.org/10.1007/s10534-016-9931-7 (2016).
doi: 10.1007/s10534-016-9931-7
pubmed: 27053146
pmcid: 27053146
Marasini, R., Thanh Nguyen, T. D. & Aryal, S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol, e1580, https://doi.org/10.1002/wnan.1580 (2019).
Granata, V. et al. Immediate Adverse Reactions to Gadolinium-Based MR Contrast Media: A Retrospective Analysis on 10,608 Examinations. Biomed. Res. Int. 2016, 3918292, https://doi.org/10.1155/2016/3918292 (2016).
doi: 10.1155/2016/3918292
pubmed: 27652261
pmcid: 27652261
Koudelka, S. et al. Liposomal nanocarriers for plasminogen activators. J. Control. Rel. 227, 45–57, https://doi.org/10.1016/j.jconrel.2016.02.019 (2016).
doi: 10.1016/j.jconrel.2016.02.019
Unger, E., Cardenas, D., Zerella, A., Fajardo, L. L. & Tilcock, C. Biodistribution and clearance of liposomal gadolinium-DTPA. Invest. Radiol. 25, 638–644 (1990).
doi: 10.1097/00004424-199006000-00004
pubmed: 2354925
pmcid: 2354925
Kabalka, G. W. et al. Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn. Reson. Med. 19, 406–415 (1991).
doi: 10.1002/mrm.1910190231
pubmed: 1881329
pmcid: 1881329
Gu, M. J. et al. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. Int. J. Nanomed. 10, 5187–5204 (2015).
Bartheldyova, E. et al. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically alpha-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44. Bioconjug Chem. 29, 2343–2356, https://doi.org/10.1021/acs.bioconjchem.8b00311 (2018).
doi: 10.1021/acs.bioconjchem.8b00311
pubmed: 29898364
pmcid: 29898364
Borresen, B. et al. Theranostic Imaging May Vaccinate against the Therapeutic Benefit of Long Circulating PEGylated Liposomes and Change Cargo Pharmacokinetics. ACS Nano 12, 11386–11398, https://doi.org/10.1021/acsnano.8b06266 (2018).
doi: 10.1021/acsnano.8b06266
pubmed: 30372038
pmcid: 30372038
Bartheldyova, E. et al. N-Oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: Synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells. Carbohydr. Polym. 207, 521–532, https://doi.org/10.1016/j.carbpol.2018.10.121 (2019).
doi: 10.1016/j.carbpol.2018.10.121
pubmed: 30600036
pmcid: 30600036
Zaborova, O. V. et al. A Novel Approach to Increase the Stability of Liposomal Containers via In Prep Coating by Poly[N-(2-Hydroxypropyl)Methacrylamide] with Covalently Attached Cholesterol Groups. Macromol Chem Phys 219 (2018).
Kuijten, M. M. et al. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging. Sci. Rep. 5, 17220, https://doi.org/10.1038/srep17220 (2015).
doi: 10.1038/srep17220
pubmed: 26610702
pmcid: 26610702
Zhang, J. D., Berntenis, N., Roth, A. & Ebeling, M. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. Pharmacogenomics J. 14, 208–216, https://doi.org/10.1038/tpj.2013.39 (2014).
doi: 10.1038/tpj.2013.39
pubmed: 24217556
pmcid: 24217556
Vihervaara, A. & Sistonen, L. HSF1 at a glance. J. Cell Sci. 127, 261–266, https://doi.org/10.1242/jcs.132605 (2014).
doi: 10.1242/jcs.132605
pubmed: 24421309
pmcid: 24421309
Oslowski, C. M., Urano, F. & Measuring, E. R. stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490, 71–92, https://doi.org/10.1016/B978-0-12-385114-7.00004-0 (2011).
doi: 10.1016/B978-0-12-385114-7.00004-0
pubmed: 21266244
pmcid: 21266244
Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. & Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol. Life Sci. 73, 3221–3247, https://doi.org/10.1007/s00018-016-2223-0 (2016).
doi: 10.1007/s00018-016-2223-0
pubmed: 27100828
pmcid: 27100828
Christmann, M., Tomicic, M. T., Roos, W. P. & Kaina, B. Mechanisms of human DNA repair: an update. Toxicol. 193, 3–34 (2003).
doi: 10.1016/S0300-483X(03)00287-7
Guillouzo, A. et al. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168, 66–73, https://doi.org/10.1016/j.cbi.2006.12.003 (2007).
doi: 10.1016/j.cbi.2006.12.003
pubmed: 17241619
pmcid: 17241619
Hakkola, J. et al. Cytochrome P450 Induction and Xeno-Sensing Receptors Pregnane X Receptor, Constitutive Androstane Receptor, Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor alpha at the Crossroads of Toxicokinetics and Toxicodynamics. Basic. Clin. Pharmacol. Toxicol. 123(Suppl 5), 42–50, https://doi.org/10.1111/bcpt.13004 (2018).
doi: 10.1111/bcpt.13004
Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M. & Weinmann, H. J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005).
doi: 10.1097/01.rli.0000184756.66360.d3
Guenoun, J., Doeswijk, G. N., Krestin, G. P. & Bernsen, M. R. Compartmentalization of Gd liposomes: the quenching effect explained. Contrast Media Mol. Imaging 11, 106–114, https://doi.org/10.1002/cmmi.1669 (2016).
doi: 10.1002/cmmi.1669
Bayer Inc. Gadovist Product Monograph 2018, www.bayer.ca/omr/online/gadovist-pm-en.pdf accessed 19 June 2019.
Endrikat, J., Vogtlaender, K., Dohanish, S., Balzer, T. & Breuer, J. Safety of Gadobutrol: Results From 42 Clinical Phase II to IV Studies and Postmarketing Surveillance After 29 Million Applications. Invest. Radiol. 51, 537–543, https://doi.org/10.1097/RLI.0000000000000270 (2016).
doi: 10.1097/RLI.0000000000000270
pubmed: 4982758
pmcid: 4982758
Mercantepe, T. et al. Effects of gadolinium-based MRI contrast agents on liver tissue. J. Magn. Reson. Imaging 48, 1367–1374, https://doi.org/10.1002/jmri.26031 (2018).
doi: 10.1002/jmri.26031
Unger, E., Needleman, P., Cullis, P. & Tilcock, C. Gadolinium-Dtpa Liposomes as a Potential Mri Contrast Agent Work in Progress. Investig. Radiology 23, 928–932 (1988).
doi: 10.1097/00004424-198812000-00010
Guenoun, J. et al. Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transpl. 21, 191–205, https://doi.org/10.3727/096368911X593118 (2012).
doi: 10.3727/096368911X593118
Poisson, J. et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 66, 212–227, https://doi.org/10.1016/j.jhep.2016.07.009 (2017).
doi: 10.1016/j.jhep.2016.07.009
Kyffin, J. A. et al. Impact of cell types and culture methods on the functionality of in vitro liver systems - A review of cell systems for hepatotoxicity assessment. Toxicol. Vitro 48, 262–275, https://doi.org/10.1016/j.tiv.2018.01.023 (2018).
doi: 10.1016/j.tiv.2018.01.023
McGill, M. R. et al. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology 53, 974–982, https://doi.org/10.1002/hep.24132 (2011).
doi: 10.1002/hep.24132
pubmed: 21319200
pmcid: 21319200
Rubin, K. et al. HepaRG cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes. Drug. Metab. Dispos. 43, 119–125, https://doi.org/10.1124/dmd.114.059246 (2015).
doi: 10.1124/dmd.114.059246
pubmed: 25371393
pmcid: 25371393
Tolosa, L. et al. Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicol. Appl. Pharmacol. 302, 1–9, https://doi.org/10.1016/j.taap.2016.04.007 (2016).
doi: 10.1016/j.taap.2016.04.007
pubmed: 27089845
pmcid: 27089845
Lu, D., Chen, J. & Hai, T. The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem. J. 401, 559–567, https://doi.org/10.1042/BJ20061081 (2007).
doi: 10.1042/BJ20061081
pubmed: 17014422
pmcid: 17014422
Hai, T., Wolford, C. C. & Chang, Y. S. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr. 15, 1–11 (2010).
doi: 10.3727/105221610X12819686555015
pubmed: 21061913
pmcid: 21061913
Tanaka, Y. et al. Systems Analysis of ATF3 in Stress Response and Cancer Reveals Opposing Effects on Pro-Apoptotic Genes in p53 Pathway. PLoS One 6, e26848, https://doi.org/10.1371/journal.pone.0026848 (2011).
doi: 10.1371/journal.pone.0026848
pubmed: 22046379
pmcid: 22046379
Bhattacharyya, S., Fang, F., Tourtellotte, W. & Varga, J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J. Pathol. 229, 286–297, https://doi.org/10.1002/path.4131 (2013).
doi: 10.1002/path.4131
Schaap, F. G., Kremer, A. E., Lamers, W. H., Jansen, P. L. & Gaemers, I. C. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochim. 95, 692–699, https://doi.org/10.1016/j.biochi.2012.10.019 (2013).
doi: 10.1016/j.biochi.2012.10.019
Wan, X. S., Wang, X., Xiao, J., Li, X. K. & Zhou, H. Corrigendum to “ATF4- and CHOP-Dependent Induction of FGF21 through Endoplasmic Reticulum Stress”. Biomed. Res. Int. 2018, 3218606, https://doi.org/10.1155/2018/3218606 (2018).
doi: 10.1155/2018/3218606
pubmed: 5960522
pmcid: 5960522
Zhang, M., Sun, W., Qian, J. & Tang, Y. Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid beta-oxidation and ketogenesis via activating XBP1 signaling in liver. Redox Biol. 16, 87–96, https://doi.org/10.1016/j.redox.2018.01.013 (2018).
doi: 10.1016/j.redox.2018.01.013
pubmed: 29482168
pmcid: 29482168
Fulda, S., Gorman, A. M., Hori, O. & Samali, A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010, 214074, https://doi.org/10.1155/2010/214074 (2010).
doi: 10.1155/2010/214074
pubmed: 20182529
pmcid: 20182529
Li, J., Labbadia, J. & Morimoto, R. I. Rethinking HSF1 in Stress, Development, and Organismal Health. Trends Cell Biol. 27, 895–905, https://doi.org/10.1016/j.tcb.2017.08.002 (2017).
doi: 10.1016/j.tcb.2017.08.002
pubmed: 28890254
pmcid: 28890254
Dai, C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20160525, https://doi.org/10.1098/rstb.2016.0525 (2018).
doi: 10.1098/rstb.2016.0525
Dutto, I., Tillhon, M., Cazzalini, O., Stivala, L. A. & Prosperi, E. Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology. Arch. Toxicol. 89, 155–178, https://doi.org/10.1007/s00204-014-1430-4 (2015).
doi: 10.1007/s00204-014-1430-4
pubmed: 25514883
pmcid: 25514883
Rasheva, V. I. & Domingos, P. M. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14, 996–1007, https://doi.org/10.1007/s10495-009-0341-y (2009).
doi: 10.1007/s10495-009-0341-y
pubmed: 19360473
pmcid: 19360473
Yoshida, Y., Umeno, A. & Shichiri, M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 52, 9–16, https://doi.org/10.3164/jcbn.12-112 (2013).
doi: 10.3164/jcbn.12-112
pubmed: 23341691
pmcid: 23341691
Wang, D. & Dubois, R. N. Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–193, https://doi.org/10.1038/nrc2809 (2010).
doi: 10.1038/nrc2809
pubmed: 20168319
pmcid: 20168319
Rynning, I. et al. In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses. Toxicol. Sci. 166, 51–64, https://doi.org/10.1093/toxsci/kfy183 (2018).
doi: 10.1093/toxsci/kfy183
pubmed: 30010986
pmcid: 30010986
Knotigova, P. T. et al. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol Pharm, https://doi.org/10.1021/acs.molpharmaceut.9b00225 (2019).
Mukherjee, S. P., Bottini, M. & Fadeel, B. Graphene and the Immune System: A Romance of Many Dimensions. Front. Immunol. 8, 673, https://doi.org/10.3389/fimmu.2017.00673 (2017).
doi: 10.3389/fimmu.2017.00673
pubmed: 28659915
pmcid: 28659915
Saleem, J., Wang, L. M. & Chen, C. Y. Immunological effects of graphene family nanomaterials. Nanoimpact 5, 109–118, https://doi.org/10.1016/j.impact.2017.01.005 (2017).
doi: 10.1016/j.impact.2017.01.005
Guo, H., Callaway, J. B. & Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687, https://doi.org/10.1038/nm.3893 (2015).
doi: 10.1038/nm.3893
pubmed: 26121197
pmcid: 26121197
Mackowiak, B. & Wang, H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochim. Biophys. Acta 1859, 1130–1140, https://doi.org/10.1016/j.bbagrm.2016.02.006 (2016).
doi: 10.1016/j.bbagrm.2016.02.006
pubmed: 26877237
pmcid: 26877237
Aitken, A. E., Richardson, T. A. & Morgan, E. T. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu. Rev. Pharmacol. 46, 123–149 (2006).
doi: 10.1146/annurev.pharmtox.46.120604.141059
Aninat, C. et al. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug. Metab. Dispos. 34, 75–83, https://doi.org/10.1124/dmd.105.006759 (2006).
doi: 10.1124/dmd.105.006759
pubmed: 16204462
pmcid: 16204462
van Schadewijk, A., van’t Wout, E. F., Stolk, J. & Hiemstra, P. S. A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress. Chaperones 17, 275–279, https://doi.org/10.1007/s12192-011-0306-2 (2012).
doi: 10.1007/s12192-011-0306-2
pubmed: 22038282
pmcid: 22038282
Pencikova, K. et al. Atropisomers of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro. Env. Sci. Pollut. R. 25, 16411–16419, https://doi.org/10.1007/s11356-017-0683-x (2018).
doi: 10.1007/s11356-017-0683-x
Soucek, K. et al. Presence of growth/differentiation factor-15 cytokine in human follicular fluid, granulosa cells, and oocytes. J. Assist. Reprod. Genet. 35, 1407–1417, https://doi.org/10.1007/s10815-018-1230-5 (2018).
doi: 10.1007/s10815-018-1230-5
pubmed: 29948426
pmcid: 29948426
Prochazkova, J. et al. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol. Lett. 292, 162–174, https://doi.org/10.1016/j.toxlet.2018.04.024 (2018).
doi: 10.1016/j.toxlet.2018.04.024
pubmed: 29704546
pmcid: 29704546
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).
doi: 10.1038/nprot.2008.73
pubmed: 18546601
pmcid: 18546601
Effenberg, R. et al. Nonpyrogenic Molecular Adjuvants Based on norAbu-Muramyldipeptide and norAbu-Glucosaminyl Muramyldipeptide: Synthesis, Molecular Mechanisms of Action, and Biological Activities in Vitro and in Vivo. J. Med. Chem. 60, 7745–7763, https://doi.org/10.1021/acs.jmedchem.7b00593 (2017).
doi: 10.1021/acs.jmedchem.7b00593
pubmed: 28829599
pmcid: 28829599
Pencikova, K. et al. In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion. Env. Pollut. 237, 473–486, https://doi.org/10.1016/j.envpol.2018.02.067 (2018).
doi: 10.1016/j.envpol.2018.02.067