Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
16 03 2020
Historique:
received: 17 09 2019
accepted: 18 12 2019
entrez: 18 3 2020
pubmed: 18 3 2020
medline: 15 12 2020
Statut: epublish

Résumé

Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd

Identifiants

pubmed: 32179785
doi: 10.1038/s41598-020-60284-z
pii: 10.1038/s41598-020-60284-z
pmc: PMC7075985
doi:

Substances chimiques

Contrast Media 0
Drug Carriers 0
Fibrinolytic Agents 0
Inflammasomes 0
Liposomes 0
NLR Family, Pyrin Domain-Containing 3 Protein 0
NLRP3 protein, human 0
Phosphatidylethanolamines 0
gadolinium phosphatidylethanolamine-DTPA 0
Gadolinium DTPA K2I13DR72L

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4780

Références

Cao, Y., Xu, L. J., Kuang, Y., Xiong, D. S. & Pei, R. J. Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J. Mater. Chem. B 5, 3431–3461 (2017).
doi: 10.1039/C7TB00382J
Rogosnitzky, M. & Branch, S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29, 365–376, https://doi.org/10.1007/s10534-016-9931-7 (2016).
doi: 10.1007/s10534-016-9931-7 pubmed: 27053146 pmcid: 27053146
Marasini, R., Thanh Nguyen, T. D. & Aryal, S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol, e1580, https://doi.org/10.1002/wnan.1580 (2019).
Granata, V. et al. Immediate Adverse Reactions to Gadolinium-Based MR Contrast Media: A Retrospective Analysis on 10,608 Examinations. Biomed. Res. Int. 2016, 3918292, https://doi.org/10.1155/2016/3918292 (2016).
doi: 10.1155/2016/3918292 pubmed: 27652261 pmcid: 27652261
Koudelka, S. et al. Liposomal nanocarriers for plasminogen activators. J. Control. Rel. 227, 45–57, https://doi.org/10.1016/j.jconrel.2016.02.019 (2016).
doi: 10.1016/j.jconrel.2016.02.019
Unger, E., Cardenas, D., Zerella, A., Fajardo, L. L. & Tilcock, C. Biodistribution and clearance of liposomal gadolinium-DTPA. Invest. Radiol. 25, 638–644 (1990).
doi: 10.1097/00004424-199006000-00004 pubmed: 2354925 pmcid: 2354925
Kabalka, G. W. et al. Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn. Reson. Med. 19, 406–415 (1991).
doi: 10.1002/mrm.1910190231 pubmed: 1881329 pmcid: 1881329
Gu, M. J. et al. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. Int. J. Nanomed. 10, 5187–5204 (2015).
Bartheldyova, E. et al. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically alpha-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44. Bioconjug Chem. 29, 2343–2356, https://doi.org/10.1021/acs.bioconjchem.8b00311 (2018).
doi: 10.1021/acs.bioconjchem.8b00311 pubmed: 29898364 pmcid: 29898364
Borresen, B. et al. Theranostic Imaging May Vaccinate against the Therapeutic Benefit of Long Circulating PEGylated Liposomes and Change Cargo Pharmacokinetics. ACS Nano 12, 11386–11398, https://doi.org/10.1021/acsnano.8b06266 (2018).
doi: 10.1021/acsnano.8b06266 pubmed: 30372038 pmcid: 30372038
Bartheldyova, E. et al. N-Oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: Synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells. Carbohydr. Polym. 207, 521–532, https://doi.org/10.1016/j.carbpol.2018.10.121 (2019).
doi: 10.1016/j.carbpol.2018.10.121 pubmed: 30600036 pmcid: 30600036
Zaborova, O. V. et al. A Novel Approach to Increase the Stability of Liposomal Containers via In Prep Coating by Poly[N-(2-Hydroxypropyl)Methacrylamide] with Covalently Attached Cholesterol Groups. Macromol Chem Phys 219 (2018).
Kuijten, M. M. et al. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging. Sci. Rep. 5, 17220, https://doi.org/10.1038/srep17220 (2015).
doi: 10.1038/srep17220 pubmed: 26610702 pmcid: 26610702
Zhang, J. D., Berntenis, N., Roth, A. & Ebeling, M. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. Pharmacogenomics J. 14, 208–216, https://doi.org/10.1038/tpj.2013.39 (2014).
doi: 10.1038/tpj.2013.39 pubmed: 24217556 pmcid: 24217556
Vihervaara, A. & Sistonen, L. HSF1 at a glance. J. Cell Sci. 127, 261–266, https://doi.org/10.1242/jcs.132605 (2014).
doi: 10.1242/jcs.132605 pubmed: 24421309 pmcid: 24421309
Oslowski, C. M., Urano, F. & Measuring, E. R. stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490, 71–92, https://doi.org/10.1016/B978-0-12-385114-7.00004-0 (2011).
doi: 10.1016/B978-0-12-385114-7.00004-0 pubmed: 21266244 pmcid: 21266244
Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. & Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol. Life Sci. 73, 3221–3247, https://doi.org/10.1007/s00018-016-2223-0 (2016).
doi: 10.1007/s00018-016-2223-0 pubmed: 27100828 pmcid: 27100828
Christmann, M., Tomicic, M. T., Roos, W. P. & Kaina, B. Mechanisms of human DNA repair: an update. Toxicol. 193, 3–34 (2003).
doi: 10.1016/S0300-483X(03)00287-7
Guillouzo, A. et al. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168, 66–73, https://doi.org/10.1016/j.cbi.2006.12.003 (2007).
doi: 10.1016/j.cbi.2006.12.003 pubmed: 17241619 pmcid: 17241619
Hakkola, J. et al. Cytochrome P450 Induction and Xeno-Sensing Receptors Pregnane X Receptor, Constitutive Androstane Receptor, Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor alpha at the Crossroads of Toxicokinetics and Toxicodynamics. Basic. Clin. Pharmacol. Toxicol. 123(Suppl 5), 42–50, https://doi.org/10.1111/bcpt.13004 (2018).
doi: 10.1111/bcpt.13004
Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M. & Weinmann, H. J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005).
doi: 10.1097/01.rli.0000184756.66360.d3
Guenoun, J., Doeswijk, G. N., Krestin, G. P. & Bernsen, M. R. Compartmentalization of Gd liposomes: the quenching effect explained. Contrast Media Mol. Imaging 11, 106–114, https://doi.org/10.1002/cmmi.1669 (2016).
doi: 10.1002/cmmi.1669
Bayer Inc. Gadovist Product Monograph 2018, www.bayer.ca/omr/online/gadovist-pm-en.pdf accessed 19 June 2019.
Endrikat, J., Vogtlaender, K., Dohanish, S., Balzer, T. & Breuer, J. Safety of Gadobutrol: Results From 42 Clinical Phase II to IV Studies and Postmarketing Surveillance After 29 Million Applications. Invest. Radiol. 51, 537–543, https://doi.org/10.1097/RLI.0000000000000270 (2016).
doi: 10.1097/RLI.0000000000000270 pubmed: 4982758 pmcid: 4982758
Mercantepe, T. et al. Effects of gadolinium-based MRI contrast agents on liver tissue. J. Magn. Reson. Imaging 48, 1367–1374, https://doi.org/10.1002/jmri.26031 (2018).
doi: 10.1002/jmri.26031
Unger, E., Needleman, P., Cullis, P. & Tilcock, C. Gadolinium-Dtpa Liposomes as a Potential Mri Contrast Agent Work in Progress. Investig. Radiology 23, 928–932 (1988).
doi: 10.1097/00004424-198812000-00010
Guenoun, J. et al. Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transpl. 21, 191–205, https://doi.org/10.3727/096368911X593118 (2012).
doi: 10.3727/096368911X593118
Poisson, J. et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 66, 212–227, https://doi.org/10.1016/j.jhep.2016.07.009 (2017).
doi: 10.1016/j.jhep.2016.07.009
Kyffin, J. A. et al. Impact of cell types and culture methods on the functionality of in vitro liver systems - A review of cell systems for hepatotoxicity assessment. Toxicol. Vitro 48, 262–275, https://doi.org/10.1016/j.tiv.2018.01.023 (2018).
doi: 10.1016/j.tiv.2018.01.023
McGill, M. R. et al. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology 53, 974–982, https://doi.org/10.1002/hep.24132 (2011).
doi: 10.1002/hep.24132 pubmed: 21319200 pmcid: 21319200
Rubin, K. et al. HepaRG cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes. Drug. Metab. Dispos. 43, 119–125, https://doi.org/10.1124/dmd.114.059246 (2015).
doi: 10.1124/dmd.114.059246 pubmed: 25371393 pmcid: 25371393
Tolosa, L. et al. Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicol. Appl. Pharmacol. 302, 1–9, https://doi.org/10.1016/j.taap.2016.04.007 (2016).
doi: 10.1016/j.taap.2016.04.007 pubmed: 27089845 pmcid: 27089845
Lu, D., Chen, J. & Hai, T. The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem. J. 401, 559–567, https://doi.org/10.1042/BJ20061081 (2007).
doi: 10.1042/BJ20061081 pubmed: 17014422 pmcid: 17014422
Hai, T., Wolford, C. C. & Chang, Y. S. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr. 15, 1–11 (2010).
doi: 10.3727/105221610X12819686555015 pubmed: 21061913 pmcid: 21061913
Tanaka, Y. et al. Systems Analysis of ATF3 in Stress Response and Cancer Reveals Opposing Effects on Pro-Apoptotic Genes in p53 Pathway. PLoS One 6, e26848, https://doi.org/10.1371/journal.pone.0026848 (2011).
doi: 10.1371/journal.pone.0026848 pubmed: 22046379 pmcid: 22046379
Bhattacharyya, S., Fang, F., Tourtellotte, W. & Varga, J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J. Pathol. 229, 286–297, https://doi.org/10.1002/path.4131 (2013).
doi: 10.1002/path.4131
Schaap, F. G., Kremer, A. E., Lamers, W. H., Jansen, P. L. & Gaemers, I. C. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochim. 95, 692–699, https://doi.org/10.1016/j.biochi.2012.10.019 (2013).
doi: 10.1016/j.biochi.2012.10.019
Wan, X. S., Wang, X., Xiao, J., Li, X. K. & Zhou, H. Corrigendum to “ATF4- and CHOP-Dependent Induction of FGF21 through Endoplasmic Reticulum Stress”. Biomed. Res. Int. 2018, 3218606, https://doi.org/10.1155/2018/3218606 (2018).
doi: 10.1155/2018/3218606 pubmed: 5960522 pmcid: 5960522
Zhang, M., Sun, W., Qian, J. & Tang, Y. Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid beta-oxidation and ketogenesis via activating XBP1 signaling in liver. Redox Biol. 16, 87–96, https://doi.org/10.1016/j.redox.2018.01.013 (2018).
doi: 10.1016/j.redox.2018.01.013 pubmed: 29482168 pmcid: 29482168
Fulda, S., Gorman, A. M., Hori, O. & Samali, A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010, 214074, https://doi.org/10.1155/2010/214074 (2010).
doi: 10.1155/2010/214074 pubmed: 20182529 pmcid: 20182529
Li, J., Labbadia, J. & Morimoto, R. I. Rethinking HSF1 in Stress, Development, and Organismal Health. Trends Cell Biol. 27, 895–905, https://doi.org/10.1016/j.tcb.2017.08.002 (2017).
doi: 10.1016/j.tcb.2017.08.002 pubmed: 28890254 pmcid: 28890254
Dai, C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20160525, https://doi.org/10.1098/rstb.2016.0525 (2018).
doi: 10.1098/rstb.2016.0525
Dutto, I., Tillhon, M., Cazzalini, O., Stivala, L. A. & Prosperi, E. Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology. Arch. Toxicol. 89, 155–178, https://doi.org/10.1007/s00204-014-1430-4 (2015).
doi: 10.1007/s00204-014-1430-4 pubmed: 25514883 pmcid: 25514883
Rasheva, V. I. & Domingos, P. M. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14, 996–1007, https://doi.org/10.1007/s10495-009-0341-y (2009).
doi: 10.1007/s10495-009-0341-y pubmed: 19360473 pmcid: 19360473
Yoshida, Y., Umeno, A. & Shichiri, M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 52, 9–16, https://doi.org/10.3164/jcbn.12-112 (2013).
doi: 10.3164/jcbn.12-112 pubmed: 23341691 pmcid: 23341691
Wang, D. & Dubois, R. N. Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–193, https://doi.org/10.1038/nrc2809 (2010).
doi: 10.1038/nrc2809 pubmed: 20168319 pmcid: 20168319
Rynning, I. et al. In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses. Toxicol. Sci. 166, 51–64, https://doi.org/10.1093/toxsci/kfy183 (2018).
doi: 10.1093/toxsci/kfy183 pubmed: 30010986 pmcid: 30010986
Knotigova, P. T. et al. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol Pharm, https://doi.org/10.1021/acs.molpharmaceut.9b00225 (2019).
Mukherjee, S. P., Bottini, M. & Fadeel, B. Graphene and the Immune System: A Romance of Many Dimensions. Front. Immunol. 8, 673, https://doi.org/10.3389/fimmu.2017.00673 (2017).
doi: 10.3389/fimmu.2017.00673 pubmed: 28659915 pmcid: 28659915
Saleem, J., Wang, L. M. & Chen, C. Y. Immunological effects of graphene family nanomaterials. Nanoimpact 5, 109–118, https://doi.org/10.1016/j.impact.2017.01.005 (2017).
doi: 10.1016/j.impact.2017.01.005
Guo, H., Callaway, J. B. & Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687, https://doi.org/10.1038/nm.3893 (2015).
doi: 10.1038/nm.3893 pubmed: 26121197 pmcid: 26121197
Mackowiak, B. & Wang, H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochim. Biophys. Acta 1859, 1130–1140, https://doi.org/10.1016/j.bbagrm.2016.02.006 (2016).
doi: 10.1016/j.bbagrm.2016.02.006 pubmed: 26877237 pmcid: 26877237
Aitken, A. E., Richardson, T. A. & Morgan, E. T. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu. Rev. Pharmacol. 46, 123–149 (2006).
doi: 10.1146/annurev.pharmtox.46.120604.141059
Aninat, C. et al. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug. Metab. Dispos. 34, 75–83, https://doi.org/10.1124/dmd.105.006759 (2006).
doi: 10.1124/dmd.105.006759 pubmed: 16204462 pmcid: 16204462
van Schadewijk, A., van’t Wout, E. F., Stolk, J. & Hiemstra, P. S. A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress. Chaperones 17, 275–279, https://doi.org/10.1007/s12192-011-0306-2 (2012).
doi: 10.1007/s12192-011-0306-2 pubmed: 22038282 pmcid: 22038282
Pencikova, K. et al. Atropisomers of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro. Env. Sci. Pollut. R. 25, 16411–16419, https://doi.org/10.1007/s11356-017-0683-x (2018).
doi: 10.1007/s11356-017-0683-x
Soucek, K. et al. Presence of growth/differentiation factor-15 cytokine in human follicular fluid, granulosa cells, and oocytes. J. Assist. Reprod. Genet. 35, 1407–1417, https://doi.org/10.1007/s10815-018-1230-5 (2018).
doi: 10.1007/s10815-018-1230-5 pubmed: 29948426 pmcid: 29948426
Prochazkova, J. et al. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol. Lett. 292, 162–174, https://doi.org/10.1016/j.toxlet.2018.04.024 (2018).
doi: 10.1016/j.toxlet.2018.04.024 pubmed: 29704546 pmcid: 29704546
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).
doi: 10.1038/nprot.2008.73 pubmed: 18546601 pmcid: 18546601
Effenberg, R. et al. Nonpyrogenic Molecular Adjuvants Based on norAbu-Muramyldipeptide and norAbu-Glucosaminyl Muramyldipeptide: Synthesis, Molecular Mechanisms of Action, and Biological Activities in Vitro and in Vivo. J. Med. Chem. 60, 7745–7763, https://doi.org/10.1021/acs.jmedchem.7b00593 (2017).
doi: 10.1021/acs.jmedchem.7b00593 pubmed: 28829599 pmcid: 28829599
Pencikova, K. et al. In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion. Env. Pollut. 237, 473–486, https://doi.org/10.1016/j.envpol.2018.02.067 (2018).
doi: 10.1016/j.envpol.2018.02.067

Auteurs

Pavlína Šimečková (P)

Veterinary Research Institute, Brno, Czech Republic.

František Hubatka (F)

Veterinary Research Institute, Brno, Czech Republic.

Jan Kotouček (J)

Veterinary Research Institute, Brno, Czech Republic.

Pavlína Turánek Knötigová (P)

Veterinary Research Institute, Brno, Czech Republic.

Josef Mašek (J)

Veterinary Research Institute, Brno, Czech Republic.

Josef Slavík (J)

Veterinary Research Institute, Brno, Czech Republic.

Ondrej Kováč (O)

Veterinary Research Institute, Brno, Czech Republic.

Jiří Neča (J)

Veterinary Research Institute, Brno, Czech Republic.

Pavel Kulich (P)

Veterinary Research Institute, Brno, Czech Republic.

Dominik Hrebík (D)

Central European Institute of Technology CEITEC, Structural Virology, Masaryk University, Brno, Czech Republic.

Jana Stráská (J)

Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, Czech Republic.

Kateřina Pěnčíková (K)

Veterinary Research Institute, Brno, Czech Republic.

Jiřina Procházková (J)

Veterinary Research Institute, Brno, Czech Republic.

Pavel Diviš (P)

Faculty of Chemistry, Technical University, Brno, Czech Republic.

Stuart Macaulay (S)

Malvern Instruments, Great Malvern, UK.

Robert Mikulík (R)

International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic.
Neurology Department, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.

Milan Raška (M)

Veterinary Research Institute, Brno, Czech Republic.
Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic.

Miroslav Machala (M)

Veterinary Research Institute, Brno, Czech Republic. machala@vri.cz.

Jaroslav Turánek (J)

Veterinary Research Institute, Brno, Czech Republic. turanek@vri.cz.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH