Prospective evaluation of changes in choroidal vascularity index after half-dose photodynamic therapy versus micropulse laser treatment in chronic central serous chorioretinopathy.
Adult
Central Serous Chorioretinopathy
/ drug therapy
Choroid
/ blood supply
Chronic Disease
Coloring Agents
/ administration & dosage
Female
Fluorescein Angiography
Humans
Indocyanine Green
/ administration & dosage
Laser Therapy
Male
Middle Aged
Observer Variation
Photochemotherapy
Photosensitizing Agents
/ therapeutic use
Prospective Studies
Tomography, Optical Coherence
Treatment Outcome
Ultraviolet Rays
Verteporfin
/ therapeutic use
Visual Acuity
/ physiology
Central serous chorioretinopathy
Choroidal vascularity index
Micropulse laser
Photodynamic therapy
Journal
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248
Informations de publication
Date de publication:
Jun 2020
Jun 2020
Historique:
received:
11
10
2019
accepted:
02
02
2020
revised:
20
01
2020
pubmed:
15
3
2020
medline:
7
4
2021
entrez:
15
3
2020
Statut:
ppublish
Résumé
To assess whether treatment of chronic central serous chorioretinopathy (cCSC) with photodynamic therapy (PDT) and high-density subthreshold micropulse laser (HSML) results in choroidal vascularity index (CVI) changes that may account for the treatment effect. Patients with cCSC were prospectively included and analyzed. Patients received either half-dose PDT or HSML treatment. CVI of the affected and unaffected eye was obtained before treatment, 6 to 8 weeks after treatment, and 7 to 8 months after treatment. At baseline, 29 eyes (29 patients) were included both in the PDT and in the HSML group. The mean (± standard deviation) CVI change in the HSML group between before PDT and 6 to 8 weeks after PDT was - 0.009 ± 0.032 (p = 0.127), whereas this was 0.0025 ± 0.037 (p = 0.723) between the visit before PDT and final visit. The patients in the PDT group had a CVI change of - 0.0025 ± 0.037 (p = 0.723) between the visit before PDT and first visit after PDT, and a mean CVI change of - 0.013 ± 0.038 (p = 0.080) between the visit before PDT and final visit. There was no significant correlation between CVI and BCVA at the measured time points, in both the HSML group (p = 0.885), and in the PDT group (p = 0.904). Moreover, no significant changes in CVI occurred in the unaffected eye at any time point. PDT and HSML do not significantly affect CVI, and therefore a CVI change may not be primarily responsible for the treatment effect. The positive treatment effect of both interventions may rely on other mechanisms, such as an effect on choriocapillaris and/or retinal pigment epithelium function.
Identifiants
pubmed: 32170365
doi: 10.1007/s00417-020-04619-6
pii: 10.1007/s00417-020-04619-6
pmc: PMC7237528
doi:
Substances chimiques
Coloring Agents
0
Photosensitizing Agents
0
Verteporfin
0X9PA28K43
Indocyanine Green
IX6J1063HV
Types de publication
Comparative Study
Journal Article
Multicenter Study
Randomized Controlled Trial
Langues
eng
Sous-ensembles de citation
IM
Pagination
1191-1197Références
Gass JD (1967) Pathogenesis of disciform detachment of the neuroepithelium: II. Idiopathic central serous choroidopathy. Am J Ophthalmol 63(3):587/515–615/543. https://doi.org/10.1016/0002-9394(67)90027-X
doi: 10.1016/0002-9394(67)90027-X
Lehmann M, Bousquet E, Beydoun T, Behar-Cohen F (2015) PACHYCHOROID: an inherited condition? Retina 35(1):10–16
doi: 10.1097/IAE.0000000000000287
Bouzas EA, Scott MH, Mastorakos G, Chrousos GP, Kaiser-Kupfer MI (1993) Central serous chorioretinopathy in endogenous hypercortisolism. Arch Ophthalmol 111(9):1229–1233
doi: 10.1001/archopht.1993.01090090081024
Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, Jaisser F, Behar-Cohen F (2015) Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res 48:82–118
doi: 10.1016/j.preteyeres.2015.05.003
Gemenetzi M, De Salvo G, Lotery A (2010) Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye 24(12):1743
doi: 10.1038/eye.2010.130
Mehta PH, Meyerle C, Sivaprasad S, Boon C, Chhablani J (2017) Preferred practice pattern in central serous chorioretinopathy. Br J Ophthalmol 101(5):587–590. https://doi.org/10.1136/bjophthalmol-2016-309247
doi: 10.1136/bjophthalmol-2016-309247
pubmed: 27539091
Chan W-M, Lai TY, Lai RY, Liu DT, Lam DS (2008) Half-dose verteporfin photodynamic therapy for acute central serous chorioretinopathy: one-year results of a randomized controlled trial. Ophthalmology 115(10):1756–1765
doi: 10.1016/j.ophtha.2008.04.014
Piccolino FC, Eandi CM, Ventre L, De La Longrais RCR, Grignolo FM (2003) Photodynamic therapy for chronic central serous chorioretinopathy. Retina 23(6):752–763
doi: 10.1097/00006982-200312000-00002
Dhirani NA, Yang Y, Somani S (2017) Long-term outcomes in half-dose verteporfin photodynamic therapy for chronic central serous retinopathy. Clin Ophthalmol (Auckland, NZ) 11:2145–2149. https://doi.org/10.2147/opth.s151933
doi: 10.2147/opth.s151933
Erikitola OC, Crosby-Nwaobi R, Lotery AJ, Sivaprasad S (2014) Photodynamic therapy for central serous chorioretinopathy. Eye (London, England) 28(8):944–957. https://doi.org/10.1038/eye.2014.134
doi: 10.1038/eye.2014.134
Arsan A, Kanar HS, Sonmez A (2018) Visual outcomes and anatomic changes after sub-threshold micropulse yellow laser (577-nm) treatment for chronic central serous chorioretinopathy: long-term follow-up. Eye (London, England) 32(4):726–733. https://doi.org/10.1038/eye.2017.293
doi: 10.1038/eye.2017.293
Maruko I, Koizumi H, Hasegawa T, Arakawa H, Iida T (2017) Subthreshold 577 nm micropulse laser treatment for central serous chorioretinopathy. PLoS One 12(8):e0184112
doi: 10.1371/journal.pone.0184112
Ricci F, Missiroli F, Regine F, Grossi M, Dorin G (2009) Indocyanine green enhanced subthreshold diode-laser micropulse photocoagulation treatment of chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 247(5):597–607. https://doi.org/10.1007/s00417-008-1014-1
doi: 10.1007/s00417-008-1014-1
pubmed: 19089442
Chen S-N, Hwang J-F, Tseng L-F, Lin C-J (2008) Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage. Ophthalmology 115(12):2229–2234
doi: 10.1016/j.ophtha.2008.08.026
Breukink MB, den Hollander AI, Keunen JE, Boon CJ, Hoyng CB (2014) The use of eplerenone in therapy-resistant chronic central serous chorioretinopathy. Acta Ophthalmol 92(6):e488–e490. https://doi.org/10.1111/aos.12392
doi: 10.1111/aos.12392
pubmed: 24698599
Singh RP, Sears JE, Bedi R, Schachat AP, Ehlers JP, Kaiser PK (2015) Oral eplerenone for the management of chronic central serous chorioretinopathy. Int J Ophthalmol 8(2):310–314. https://doi.org/10.3980/j.issn.2222-3959.2015.02.17
doi: 10.3980/j.issn.2222-3959.2015.02.17
pubmed: 25938046
pmcid: 4413566
Bousquet E, Beydoun T, Zhao M, Hassan L, Offret O, Behar-Cohen F (2013) Mineralocorticoid receptor antagonism in the treatment of chronic central serous chorioretinopathy: a pilot study. Retina (Philadelphia, Pa) 33(10):2096–2102. https://doi.org/10.1097/IAE.0b013e318297a07a
doi: 10.1097/IAE.0b013e318297a07a
van Rijssen TJ, van Dijk EHC, Dijkman G, Boon CJF (2018) Clinical characteristics of chronic central serous chorioretinopathy patients with insufficient response to reduced-settings photodynamic therapy. Graefes Arch Clin Exp Ophthalmol 256(8):1395–1402. https://doi.org/10.1007/s00417-018-4003-z
doi: 10.1007/s00417-018-4003-z
pubmed: 29732468
pmcid: 6060777
van Rijssen TJ, van Dijk EHC, Yzer S, Ohno-Matsui K, Keunen JEE, Schlingemann RO, Sivaprasad S, Querques G, Downes SM, Fauser S, Hoyng CB, Piccolino FC, Chhablani JK, Lai TYY, Lotery AJ, Larsen M, Holz FG, Freund KB, Yannuzzi LA, Boon CJF (2019) Central serous chorioretinopathy: towards an evidence-based treatment guideline. Prog Retin Eye Res 73:100770. https://doi.org/10.1016/j.preteyeres.2019.07.003
doi: 10.1016/j.preteyeres.2019.07.003
pubmed: 31319157
van Dijk EHC, Fauser S, Breukink MB, Blanco-Garavito R, Groenewoud JMM, Keunen JEE, Peters PJH, Dijkman G, Souied EH, MacLaren RE, Querques G, Downes SM, Hoyng CB, Boon CJF (2018) Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE trial. Ophthalmology 125(10):1547–1555. https://doi.org/10.1016/j.ophtha.2018.04.021
doi: 10.1016/j.ophtha.2018.04.021
pubmed: 29776672
Breukink MB, Downes SM, Querques G, van Dijk EH, den Hollander AI, Blanco-Garavito R, Keunen JE, Souied EH, MacLaren RE, Hoyng CB (2015) Comparing half-dose photodynamic therapy with high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy (the PLACE trial): study protocol for a randomized controlled trial. Trials 16(1):419
doi: 10.1186/s13063-015-0939-z
Agrawal R, Gupta P, Tan K-A, Cheung CMG, Wong T-Y, Cheng C-Y (2016) Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep 6:21090
doi: 10.1038/srep21090
Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Uchino E, Terasaki H, Tomita M (2014) Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci 55(6):3893–3899. https://doi.org/10.1167/iovs.14-14447
doi: 10.1167/iovs.14-14447
pubmed: 24894395
Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, Terasaki H, Shirasawa M, Tomita M, Ishibashi T (2015) Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159(6):1123–1131.e1121. https://doi.org/10.1016/j.ajo.2015.03.005
doi: 10.1016/j.ajo.2015.03.005
pubmed: 25790737
Lee M, Lee H, Kim HC, Chung H (2018) Changes in stromal and luminal areas of the choroid in pachychoroid diseases: insights into the pathophysiology of pachychoroid diseases. Invest Ophthalmol Vis Sci 59(12):4896–4908. https://doi.org/10.1167/iovs.18-25018
doi: 10.1167/iovs.18-25018
pubmed: 30347084
Agrawal R, Chhablani J, Tan K-A, Shah S, Sarvaiya C, Banker A (2016) Choroidal vascularity index in central serous chorioretinopathy. Retina 36(9):1646–1651
doi: 10.1097/IAE.0000000000001040
Agrawal R, Wei X, Goud A, Vupparaboina KK, Jana S, Chhablani J (2017) Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography. Acta Ophthalmol 95(8):e770–e775. https://doi.org/10.1111/aos.13442
doi: 10.1111/aos.13442
pubmed: 28470942
Vupparaboina KK, Nizampatnam S, Chhablani J, Richhariya A, Jana S (2015) Automated estimation of choroidal thickness distribution and volume based on OCT images of posterior visual section. Comput Med Imaging Graph 46(Pt 3):315–327. https://doi.org/10.1016/j.compmedimag.2015.09.008
doi: 10.1016/j.compmedimag.2015.09.008
pubmed: 26526231
Vupparaboina KK, Dansingani KK, Goud A, Rasheed MA, Jawed F, Jana S, Richhariya A, Freund KB, Chhablani J (2018) Quantitative shadow compensated optical coherence tomography of choroidal vasculature. Sci Rep 8(1):6461. https://doi.org/10.1038/s41598-018-24577-8
doi: 10.1038/s41598-018-24577-8
pubmed: 29691426
pmcid: 5915389
Nicholson B, Noble J, Forooghian F, Meyerle C (2013) Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol 58(2):103–126
doi: 10.1016/j.survophthal.2012.07.004
Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF (2010) Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology 117(9):1792–1799. https://doi.org/10.1016/j.ophtha.2010.01.023
doi: 10.1016/j.ophtha.2010.01.023
pubmed: 20472289
Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500
doi: 10.1016/j.ajo.2008.05.032
Imamura Y, Fujiwara T, Margolis R, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina (Philadelphia, Pa) 29(10):1469–1473. https://doi.org/10.1097/IAE.0b013e3181be0a83
doi: 10.1097/IAE.0b013e3181be0a83
Park W, Kim M, Kim RY, Park YH (2019) Comparing effects of photodynamic therapy in central serous chorioretinopathy: full-dose versus half-dose versus half-dose-half-fluence. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-019-04426-8
Cheung CMG, Lee WK, Koizumi H, Dansingani K, Lai TYY, Freund KB (2018) Pachychoroid disease. Eye (London, England) 33(1):14–33. https://doi.org/10.1038/s41433-018-0158-4
doi: 10.1038/s41433-018-0158-4
van Rijssen TJ, van Dijk EHC, Scholz P, Breukink MB, Blanco-Garavito R, Souied EH, Keunen JEE, MacLaren RE, Querques G, Fauser S, Downes SM, Hoyng CB, Boon CJF (2019) Focal and diffuse chronic central serous chorioretinopathy treated with half-dose photodynamic therapy or subthreshold micropulse laser: PLACE trial report no. 3. Am J Ophthalmol 205:1–10. https://doi.org/10.1016/j.ajo.2019.03.025
doi: 10.1016/j.ajo.2019.03.025
pubmed: 30951686