Macro-classification of meteorites by portable energy dispersive X-ray fluorescence spectroscopy (pED-XRF), principal component analysis (PCA) and machine learning algorithms.

Machine learning Meteor-wrong Meteorite PCA Portable ED-XRF

Journal

Talanta
ISSN: 1873-3573
Titre abrégé: Talanta
Pays: Netherlands
ID NLM: 2984816R

Informations de publication

Date de publication:
15 May 2020
Historique:
received: 23 10 2019
revised: 21 01 2020
accepted: 25 01 2020
entrez: 2 3 2020
pubmed: 3 3 2020
medline: 3 3 2020
Statut: ppublish

Résumé

The research on meteorites from hot and cold deserts is gaining advantages from the recent improvements of portable technologies such as X-ray fluorescence spectroscopy (XRF). The main advantages of portable instruments include the fast recognition of meteorites through their classification in macro-groups and discrimination from materials such as industrial slags, desert varnish covered rocks and iron oxides, named "meteor-wrongs". In this study, 18 meteorite samples of different nature and origin were discriminated and preliminarily classified into characteristic macro-groups: iron meteorites, stony meteorites and meteor-wrongs, combining a portable energy dispersive XRF instrument (pED-XRF), principal component analysis (PCA) and some machine learning algorithms applied to the XRF spectra. The results showed that 100% accuracy in sample classification was obtained by applying the cubic support vector machine (CSVM), fine kernel nearest neighbor (FKNN), subspace discriminant-ensemble classifiers (SD-EC) and subspace discriminant KNN-EC (SKNN-EC) algorithms on standardized spectra.

Identifiants

pubmed: 32113548
pii: S0039-9140(20)30076-X
doi: 10.1016/j.talanta.2020.120785
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

120785

Informations de copyright

Copyright © 2020 Elsevier B.V. All rights reserved.

Auteurs

Ignazio Allegretta (I)

Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.

Bruno Marangoni (B)

Physics Institute, Federal University of Mato Grosso do Sul, P.O. Box 549, Campo Grande, MS, 79070-900, Brazil.

Paola Manzari (P)

Agenzia Spaziale Italiana, via del Politecnico, 00133, Roma, Italy.

Carlo Porfido (C)

Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.

Roberto Terzano (R)

Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.

Olga De Pascale (O)

CNR - Istituto per la Scienza e Tecnologia dei Plasmi (ISTP) - Sede di Bari, Via Amendola 122/D, 70126, Bari, Italy.

Giorgio S Senesi (GS)

CNR - Istituto per la Scienza e Tecnologia dei Plasmi (ISTP) - Sede di Bari, Via Amendola 122/D, 70126, Bari, Italy. Electronic address: giorgio.senesi@cnr.it.

Classifications MeSH