Network modeling of patients' biomolecular profiles for clinical phenotype/outcome prediction.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 02 2020
Historique:
received: 23 01 2019
accepted: 05 11 2019
entrez: 29 2 2020
pubmed: 29 2 2020
medline: 15 12 2020
Statut: epublish

Résumé

Methods for phenotype and outcome prediction are largely based on inductive supervised models that use selected biomarkers to make predictions, without explicitly considering the functional relationships between individuals. We introduce a novel network-based approach named Patient-Net (P-Net) in which biomolecular profiles of patients are modeled in a graph-structured space that represents gene expression relationships between patients. Then a kernel-based semi-supervised transductive algorithm is applied to the graph to explore the overall topology of the graph and to predict the phenotype/clinical outcome of patients. Experimental tests involving several publicly available datasets of patients afflicted with pancreatic, breast, colon and colorectal cancer show that our proposed method is competitive with state-of-the-art supervised and semi-supervised predictive systems. Importantly, P-Net also provides interpretable models that can be easily visualized to gain clues about the relationships between patients, and to formulate hypotheses about their stratification.

Identifiants

pubmed: 32107391
doi: 10.1038/s41598-020-60235-8
pii: 10.1038/s41598-020-60235-8
pmc: PMC7046773
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3612

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/F00964X/1
Pays : United Kingdom

Références

Riddick, G. et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 27, 220–224 (2011).
pubmed: 21134890 doi: 10.1093/bioinformatics/btq628
Ruderfer, D. M., Roberts, D. C., Schreiber, S. L., Perlstein, E. O. & Kruglyak, L. Using expression and genotype to predict drug response in yeast. PLoS One 4, e6907 (2009).
pubmed: 19730698 pmcid: 2731853 doi: 10.1371/journal.pone.0006907
Ye, Q.-H. et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nature Medicine 9, 416–423 (2003).
pubmed: 12640447 doi: 10.1038/nm843
Chen, Y.-C., Ke, W.-C. & Chiu, H.-W. Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Computers in Biology and Medicine 48, 1–7 (2014).
pubmed: 24631783 doi: 10.1016/j.compbiomed.2014.02.006
Das, J., Gayvert, K. M., Bunea, F., Wegkamp, M. H. & Yu, H. ENCAPP: elastic-net-based prognosis prediction and biomarker discovery for human cancers. BMC Genomics 16, 1 (2015).
doi: 10.1186/1471-2164-16-1
Podolsky, M. D. et al. Evaluation of machine learning algorithm utilization for lung cancer classification based on gene expression levels. Asian Pacific Journal of Cancer Prevention 17, 835–838 (2016).
pubmed: 26925688 doi: 10.7314/APJCP.2016.17.2.835
Shipp, M. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8, 68–74 (2002).
pubmed: 11786909 doi: 10.1038/nm0102-68
Bartsch, G. et al. Use of artificial intelligence and machine learning algorithms with gene expression profiling to predict recurrent nonmuscle invasive urothelial carcinoma of the bladder. The Journal of Urology 195, 493–498 (2016).
pubmed: 26459038 doi: 10.1016/j.juro.2015.09.090
Kim, W. et al. Development of novel breast cancer recurrence prediction model using support vector machine. Journal of Breast Cancer 15, 230–238 (2012).
pubmed: 22807942 pmcid: 3395748 doi: 10.4048/jbc.2012.15.2.230
Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. & Fotiadis, D. I. Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal 13, 8–17 (2015).
pubmed: 25750696 doi: 10.1016/j.csbj.2014.11.005
Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002).
doi: 10.1023/A:1012487302797
Wang, L., Zhu, J. & Zou, H. Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics 24, 412–419 (2008).
pubmed: 18175770 doi: 10.1093/bioinformatics/btm579
Colombo, P.-E., Milanezi, F., Weigelt, B. & Reis-Filho, J. S. Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Research 13, 1 (2011).
doi: 10.1186/bcr2890
Hofree, M., Shen, J., Carter, H., Gross, A. & Ideker, T. Network-based stratification of tumor mutations. Nature Methods 10, 1108–1115 (2013).
pubmed: 24037242 pmcid: 3866081 doi: 10.1038/nmeth.2651
Cho, D.-Y. & Przytycka, T. M. Dissecting cancer heterogeneity with a probabilistic genotype-phenotype model. Nucleic Acids Research 41, 8011–8020, https://doi.org/10.1093/nar/gkt577 (2013).
doi: 10.1093/nar/gkt577 pubmed: 23821670 pmcid: 3783162
Graim, K. et al. Revealing cancer subtypes with higher-order correlations applied to imaging and omics data. BMC Medical Genomics 10, 20, https://doi.org/10.1186/s12920-017-0256-3 (2017).
doi: 10.1186/s12920-017-0256-3 pubmed: 28359308 pmcid: 5374737
Brown, S. A. Patient Similarity: Emerging Concepts in Systems and Precision Medicine. Frontiers in Physiology 7, 561, https://doi.org/10.3389/fphys.2016.00561 (2016).
doi: 10.3389/fphys.2016.00561 pubmed: 27932992 pmcid: 5121278
Kim, Y.-A., Cho, D.-Y. & Przytycka, T. M. Understanding genotype-phenotype effects in cancer via network approaches. PLoS Comput Biol 12, e1004747 (2016).
pubmed: 26963104 pmcid: 4786343 doi: 10.1371/journal.pcbi.1004747
Park, C., Ahn, J., Kim, H. & Park, S. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning. PLoS One 9, 1–9, https://doi.org/10.1371/journal.pone.0086309 (2014).
doi: 10.1371/journal.pone.0086309
Pai, S. et al. netdx: interpretable patient classification using integrated patient similarity networks. Mol. Syst. Biol. 15, e8497, https://doi.org/10.15252/msb.20188497 (2019).
doi: 10.15252/msb.20188497 pubmed: 30872331 pmcid: 6423721
Backstrom, L. & Leskovec, J. Supervised random walks: predicting and recommending links in social networks. In Proceedings of the Forth International Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, February 9–12, 2011, 635–644, https://doi.org/10.1145/1935826.1935914 (2011).
Zhang, W., Ma, J. & Ideker, T. Classifying tumors by supervised network propagation. Bioinformatics 34, i484–i493, https://doi.org/10.1093/bioinformatics/bty247 (2018).
doi: 10.1093/bioinformatics/bty247 pubmed: 29949979 pmcid: 6022559
Barabási, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nature Reviews Genetics 12, 56–68 (2011).
pubmed: 21164525 pmcid: 3140052 doi: 10.1038/nrg2918
Moreau, Y. & Tranchevent, L.-C. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nature Reviews Genetics 13, 523–536 (2012).
pubmed: 22751426 doi: 10.1038/nrg3253
Lippert, G., Ghahramani, Z. & Borgwardt, K. Gene function prediction from synthetic lethality networks via ranking on demand. Bioinformatics 26, 912–918 (2010).
pubmed: 20154010 doi: 10.1093/bioinformatics/btq053
Winter, C. et al. Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes. PLoS Computational Biology 8 (2012).
pubmed: 22615549 pmcid: 3355064 doi: 10.1371/journal.pcbi.1002511
Kohler, S., Bauer, S., Horn, D. & Robinson, P. Walking the interactome for prioritization of candidate disease genes. Am. J. Human Genetics 82, 948–958 (2008).
doi: 10.1016/j.ajhg.2008.02.013
Ideker, T. & Krogan, N. J. Differential network biology. Molecular Systems Biology 8, 565 (2012).
pubmed: 22252388 pmcid: 3296360 doi: 10.1038/msb.2011.99
Valentini, G., Paccanaro, A., Caniza, H., Romero, A. E. & Re, M. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods. Artificial Intelligence in Medicine 61, 63–78 (2014).
pubmed: 24726035 pmcid: 4070077 doi: 10.1016/j.artmed.2014.03.003
Nguyen, T.-P. & Ho, T.-B. Detecting disease genes based on semi-supervised learning and protein-protein interaction networks. Artificial Intelligence in Medicine 54, 63–71 (2012).
pubmed: 22000346 doi: 10.1016/j.artmed.2011.09.003
Navarro, C., Martínez, V., Blanco, A. & Cano, C. Prophtools: general prioritization tools for heterogeneous biological networks. GigaScience 6, 1–8, https://doi.org/10.1093/gigascience/gix111 (2017).
doi: 10.1093/gigascience/gix111 pubmed: 29186475 pmcid: 5751048
Le Morvan, M., Zinovyev, A. & Vert, J.-P. Netnorm: Capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis. PLoS Computational Biology 13, e1005573, https://doi.org/10.1371/journal.pcbi.1005573 (2017).
doi: 10.1371/journal.pcbi.1005573 pubmed: 28650955 pmcid: 5507468
Re, M. & Valentini, G. Cancer module genes ranking using kernelized score functions. BMC Bioinformatics 13, https://doi.org/10.1186/1471-2105-13-S14-S3 (2012).
Valentini, G. et al. RANKS: a flexible tool for node label ranking and classification in biological networks. Bioinformatics 32, 2872–2874, https://doi.org/10.1093/bioinformatics/btw235 (2016).
doi: 10.1093/bioinformatics/btw235 pubmed: 27256314
Shawe-Taylor, J. & Cristianini, N. Kernel Methods for Pattern Analysis (Cambridge University Press, Cambridge, UK, 2004).
Picart-Armada, S., Thompson, W., Buil, A. & Perera-Lluna, A. “diffustats: an r package to compute diffusion-based scores on biological networks”. Bioinformatics, btx632, https://doi.org/10.1093/bioinformatics/btx632 (2017).
pmcid: 5860365 doi: 10.1093/bioinformatics/btx632 pubmed: 5860365
Smola, A. J. & Kondor, R. Kernels and regularization on graphs. In Schölkopf, B. and Warmuth, M. K. (eds) Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24–27, 2003. Proceedings, 144–158 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003).
Re, M., Mesiti, M. & Valentini, G. A Fast Ranking Algorithm for Predicting Gene Functions in Biomolecular Networks. IEEE ACM Transactions on Computational Biology and Bioinformatics 9, 1812–1818 (2012).
pubmed: 23221088 doi: 10.1109/TCBB.2012.114
Re, M. & Valentini, G. Network-based Drug Ranking and Repositioning with respect to DrugBank Therapeutic Categories. IEEE/ACM Transactions on Computational Biology and Bioinformatics 10, 1359–1371 (2013).
pubmed: 24407295 doi: 10.1109/TCBB.2013.62
Barter, R. L., Schramm, S.-J., Mann, G. J. & Yang, Y. H. Network-based biomarkers enhance classical approaches to prognostic gene expression signatures. BMC Systems Biology 8, S5, https://doi.org/10.1186/1752-0509-8-S4-S5 (2014).
doi: 10.1186/1752-0509-8-S4-S5 pubmed: 25521200 pmcid: 4290694
Statnikov, A., Wang, L. & Aliferis, C. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9, 319, https://doi.org/10.1186/1471-2105-9-319 (2008).
doi: 10.1186/1471-2105-9-319 pubmed: 18647401 pmcid: 2492881
Chen, X. & Ishwaran, H. Random forests for genomic data analysis. Genomics 99, 323–329, https://doi.org/10.1016/j.ygeno.2012.04.003 (2012).
doi: 10.1016/j.ygeno.2012.04.003 pubmed: 22546560 pmcid: 3387489
Agarwal, A. & Chakrabarti, S. Learning random walks to rank nodes in graphs. In Proceedings of the 24th International Conference on Machine Learning, ICML ’07, 9–16, https://doi.org/10.1145/1273496.1273498 (ACM, New York, NY, USA, 2007).
Page, L., Brin, S., Motwani, R. & Winograd, T. Page, L., Brin, S., Motwani, R. and Winograd, T. The pagerank citation ranking: Bringing order to the web. Tech. Rep., Stanford InfoLab (1999).
Falcon, S. & Falcon, S. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258, https://doi.org/10.1093/bioinformatics/btl567 , http://oup.prod.sis.lan/bioinformatics/article-pdf/23/2/257/532391/btl567.pdf (2006).
doi: 10.1093/bioinformatics/btl567
Tusher, V., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences 98, 5116–5121, https://doi.org/10.1073/pnas.091062498 , http://www.pnas.org/content/98/9/5116.full.pdf (2001).
doi: 10.1073/pnas.091062498
Edgington, E. & Onghena, P. Randomization tests (Chapman and Hall, New York, 2007).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One 6, 1–9, https://doi.org/10.1371/journal.pone.0021800 (2011).
doi: 10.1371/journal.pone.0021800
Krämer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530, https://doi.org/10.1093/bioinformatics/btt703 , http://oup.prod.sis.lan/bioinformatics/article-pdf/30/4/523/17343942/btt703.pdf (2013).
pubmed: 24336805 pmcid: 3928520 doi: 10.1093/bioinformatics/btt703
Cardoso, F., Ross, J. S., Piccart, M. J., Sotiriou, C. & Durbecq, V. Targeting the ubiquitin-Ťproteasome pathway in breast cancer. Clinical Breast Cancer 5, 148–157, https://doi.org/10.3816/CBC.2004.n.020 (2004).
doi: 10.3816/CBC.2004.n.020 pubmed: 15245620
Han, C.-c & Wan, F.-S. New insights into the role of endoplasmic reticulum stress in breast cancer metastasis. Journal of breast cancer 21, 354–362 (2018).
pubmed: 30607156 pmcid: 6310719 doi: 10.4048/jbc.2018.21.e51
Sisinni, L. et al. Endoplasmic reticulum stress and unfolded protein response in breast cancer: The balance between apoptosis and autophagy and its role in drug resistance. International Journal of Molecular Sciences 20, https://doi.org/10.3390/ijms20040857 (2019).
pmcid: 6412864 doi: 10.3390/ijms20040857 pubmed: 6412864
Mencalha, A., Victorino, V. J., Cecchini, R. & Panis, C. Mapping oxidative changes in breast cancer: understanding the basic to reach the clinics. Anticancer research 34, 1127–1140 (2014).
pubmed: 24596350
Bower, J. J. et al. Patterns of cell cycle checkpoint deregulation associated with intrinsic molecular subtypes of human breast cancer cells. NPJ Breast Cancer 3, 9 (2017).
pubmed: 28649649 pmcid: 5445620 doi: 10.1038/s41523-017-0009-7
Plati, J., Bucur, O. & Khosravi-Far, R. Dysregulation of apoptotic signaling in cancer: Molecular mechanisms and therapeutic opportunities. Journal of Cellular Biochemistry 104, 1124–1149 (2008).
pubmed: 18459149 pmcid: 2941905 doi: 10.1002/jcb.21707
Moulder, D. E., Hatoum, D., Tay, E., Lin, Y. & McGowan, E. M. The roles of p53 in mitochondrial dynamics and cancer metabolism: The pendulum between survival and death in breast cancer? Cancers 10, https://doi.org/10.3390/cancers10060189 (2018).
pmcid: 6024909 doi: 10.3390/cancers10060189 pubmed: 6024909
Nourazarian, A. R., Kangari, P. & Salmaninejad, A. Roles of oxidative stress in the development and progression of breast cancer. Asian Pac J Cancer Prev 15, 4745–51 (2014).
pubmed: 24998536 doi: 10.7314/APJCP.2014.15.12.4745
Hare, S. H. & Harvey, A. J. mtor function and therapeutic targeting in breast cancer. Am. journal of cancer research 7, 383 (2017).
Sotiriou, C. et al. Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis. JNCI: Journal of the National Cancer Institute 98, 262–272, https://doi.org/10.1093/jnci/djj052 , http://oup.prod.sis.lan/jnci/article-pdf/98/4/262/7688280/djj052.pdf (2006).
pubmed: 16478745 doi: 10.1093/jnci/djj052
Huang, R. et al. Increased stat1 signaling in endocrine-resistant breast cancer. PLoS One 9, 1–11, https://doi.org/10.1371/journal.pone.0094226 (2014).
doi: 10.1371/journal.pone.0094226
Park, C., Ahn, J., Kim, H. & Park, S. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning. PLoS One 9, e86309 (2014).
pubmed: 24497942 pmcid: 3908883 doi: 10.1371/journal.pone.0086309
Kuo, C.-Y. & Ann, D. K. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Communications 38, 47 (2018).
pubmed: 29996946 pmcid: 6042406 doi: 10.1186/s40880-018-0317-9
Fan, T. et al. Tumor energy metabolism and potential of 3-bromopyruvate as an inhibitor of aerobic glycolysis: implications in tumor treatment. Cancers 11, 317 (2019).
pmcid: 6468516 doi: 10.3390/cancers11030317 pubmed: 6468516
Kuniyasu, H. et al. Production of interleukin 15 by human colon cancer cells is associated with induction of mucosal hyperplasia, angiogenesis, and metastasis. Clinical Cancer Research 9, 4802–4810, https://clincancerres.aacrjournals.org/content/9/13/4802.full.pdf (2003).
Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates dna. Science 363, https://doi.org/10.1126/science.aar7785 , https://science.sciencemag.org/content/363/6428/eaar7785.full.pdf (2019).
pubmed: 30765538 pmcid: 6407708 doi: 10.1126/science.aar7785
Bourroul, G. M. et al. The destruction complex of beta-catenin in colorectal carcinoma and colonic adenoma. Einstein (São Paulo) 14, 135–142 (2016).
doi: 10.1590/S1679-45082016AO3678
Stamos, J. L. & Weis, W. I. The β-catenin destruction complex. Cold Spring Harbor perspectives in biology 5, a007898 (2013).
pubmed: 23169527 pmcid: 3579403 doi: 10.1101/cshperspect.a007898
de Oliveira, G. A. et al. Inducible nitric oxide synthase in the carcinogenesis of gastrointestinal cancers. Antioxidants & Redox Signaling 26, 1059–1077, https://doi.org/10.1089/ars.2016.6850 , PMID: 27494631 (2017).
doi: 10.1089/ars.2016.6850
Moossavi, M., Parsamanesh, N., Bahrami, A., Atkin, S. L. & Sahebkar, A. Role of the nlrp3 inflammasome in cancer. Molecular cancer 17, 158 (2018).
pubmed: 30447690 pmcid: 6240225 doi: 10.1186/s12943-018-0900-3
Vu, T. & Datta, P. K. Regulation of emt in colorectal cancer: A culprit in metastasis. Cancers 9, https://doi.org/10.3390/cancers9120171 (2017).
pmcid: 5742819 doi: 10.3390/cancers9120171 pubmed: 5742819
Tang, S. et al. Association analyses of the jak/stat signaling pathway with the progression and prognosis of colon cancer. Oncology letters 17, 159–164 (2019).
pubmed: 30655751
Chen, Y. & Song, W. Wnt/catenin β 1/microrna 183 predicts recurrence and prognosis of patients with colorectal cancer. Oncology letters 15, 4451–4456 (2018).
pubmed: 29541213 pmcid: 5835957
Yoshida, N. et al. Analysis of wnt and β-catenin expression in advanced colorectal cancer. Anticancer research 35, 4403–4410 (2015).
pubmed: 26168479
Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and nlrc4. Proceedings of the National Academy of Sciences 107, 21635–21640 (2010).
doi: 10.1073/pnas.1016814108
Ohashi, K. et al. Nod-like receptor c4 inflammasome regulates the growth of colon cancer liver metastasis in nafld. Hepatology (2019).
Perlasca, P. et al. Unipred-web: a web tool for the integration and visualization of biomolecular networks for protein function prediction. BMC Bioinform. 20, https://doi.org/10.1186/s12859-019-2959-2 (2019).
Schaeffer, S. E. Survey: Graph clustering. Comput. Sci. Rev. 1, 27–64, https://doi.org/10.1016/j.cosrev.2007.05.001 (2007).
doi: 10.1016/j.cosrev.2007.05.001
Peng, J. et al. An online tool for measuring and visualizing phenotype similarities using hpo. BMC Genomics 19, 571, https://doi.org/10.1186/s12864-018-4927-z (2018).
doi: 10.1186/s12864-018-4927-z pubmed: 30367579 pmcid: 6101067
Venet, D., Dumont, J. E. & Detours, V. Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol 7, e1002240 (2011).
pubmed: 22028643 pmcid: 3197658 doi: 10.1371/journal.pcbi.1002240
Michiels, S., Koscielny, S. & Hill, C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. The Lancet 365, 488–492 (2005).
doi: 10.1016/S0140-6736(05)17866-0
Cesa-Bianchi, N., Re, M. & Valentini, G. Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Machine Learning 88, 209–241 (2012).
doi: 10.1007/s10994-011-5271-6
Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nature methods 11, 333–337 (2014).
pubmed: 24464287 doi: 10.1038/nmeth.2810
Caceres, J. & Paccanaro, A. Disease gene prediction for molecularly uncharacterized diseases. PLoS Comput Biol 15, e1007078, https://doi.org/10.1371/journal.pcbi.1007078 (2019).
doi: 10.1371/journal.pcbi.1007078 pubmed: 31276496 pmcid: 6636748
Somol, P., Pudil, P. & Kittler, J. Fast branch and bound algorithms for optimal feature selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 900–912 (2004).
pubmed: 18579948 doi: 10.1109/TPAMI.2004.28 pmcid: 18579948
Bersanelli, M. et al. Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 17, S15, https://doi.org/10.1186/s12859-015-0857-9 (2016).
doi: 10.1186/s12859-015-0857-9
Pai, S. & Bader, G. Patient Similarity Networks for Precision Medicine. Journal of Molecular Biology 430, 2924–2938, https://doi.org/10.1016/j.jmb.2018.05.037 (2018).
doi: 10.1016/j.jmb.2018.05.037 pubmed: 29860027 pmcid: 6097926
Caniza, H., Romero, A. & Paccanaro, A. A network medicine approach to quantify distance between hereditary disease modules on the interactome. Scientific Reports 5, 17658 (2015).
pubmed: 26631976 pmcid: 4668371 doi: 10.1038/srep17658
Wang, L., Wang, Y. & Chang, Q. Feature selection methods for big data bioinformatics: A survey from the search perspective. Methods 111, 21–31, https://doi.org/10.1016/j.ymeth.2016.08.014 , Big Data Bioinformatics (2016).
pubmed: 27592382 doi: 10.1016/j.ymeth.2016.08.014 pmcid: 27592382

Auteurs

Jessica Gliozzo (J)

AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.
Department of Dermatology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, 20122, Italy.

Paolo Perlasca (P)

AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.

Marco Mesiti (M)

AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.

Elena Casiraghi (E)

AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.

Viviana Vallacchi (V)

Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy.

Elisabetta Vergani (E)

Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy.

Marco Frasca (M)

AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.

Giuliano Grossi (G)

AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.

Alessandro Petrini (A)

AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.

Matteo Re (M)

AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.

Alberto Paccanaro (A)

Royal Holloway, University of London, Centre for Systems and Synthetic Biology - Department of Computer Science, Egham, TW20 0EX, UK. alberto.paccanaro@rhul.ac.uk.
School of Applied Mathematics, Fundação Getulio Vargas, Rio de Janeiro, Brazil. alberto.paccanaro@rhul.ac.uk.

Giorgio Valentini (G)

AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy. valentini@di.unimi.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH