Water temperature, time of exposure and population density are key parameters in Enteromyxum leei fish-to-fish experimental transmission.
antibody
growth delay
host-parasite interaction
temperature
time of exposure
Journal
Journal of fish diseases
ISSN: 1365-2761
Titre abrégé: J Fish Dis
Pays: England
ID NLM: 9881188
Informations de publication
Date de publication:
Apr 2020
Apr 2020
Historique:
received:
27
11
2019
revised:
29
01
2020
accepted:
30
01
2020
pubmed:
27
2
2020
medline:
12
9
2020
entrez:
27
2
2020
Statut:
ppublish
Résumé
Enteromyxum leei is a myxozoan histozoic parasite that infects the intestine of several teleost fish species. In gilthead sea bream (Sparus aurata), it provokes a chronic disease, entailing anorexia, delayed growth, reduced marketability and mortality. Direct fish-to-fish transmission, relevant in aquaculture conditions, has been demonstrated for E. leei via effluent, cohabitation, and oral and anal routes. However, the minimum time of exposure for infection has not been established, nor the possible effect on the fish immune response. Two effluent trials were performed at different temperatures (high: average of 25.6°C; and low: constant at 18°C), different times of exposure to the effluent (1, 3, 5 and 7 weeks) and different population densities. The results showed that 1 week was enough to infect 100% of fish at high temperature and 58.3% at low temperature. High temperature not only increased the prevalence of infection in posterior intestine, but also induced a higher production of specific antibodies, limiting the progression of the infection along the intestine. Longer time of exposure to the parasite and higher fish densities facilitated E. leei infection. These results show that effective diagnosis, lowering animal density and removal of infected fish are key aspects to manage this disease in aquaculture facilities.
Substances chimiques
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
491-502Subventions
Organisme : H2020 Societal Challenges
ID : 634429
Organisme : Generalitat Valenciana
ID : APOSTD/2016/037
Organisme : Consejo Superior de Investigaciones Científicas
ID : 201740E013
Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Abd-Elfattah, A., Fontes, I., Kumar, G., Soliman, H., Hartikainen, H., Okamura, B., & El-Matbouli, M. (2014). Vertical transmission of Tetracapsuloides bryosalmonae (Myxozoa), the causative agent of salmonid proliferative kidney disease. Parasitology, 141, 482-490. https://doi.org/10.1017/s0031182013001650
Abram, Q. H., Dixon, B., & Katzenback, B. A. (2017). Impacts of low temperature on the teleost immune system. Biology, 6, 39. https://doi.org/10.3390/biology6040039
Arndt, R. E., Wagner, E. J., Cannon, Q., & Smith, M. (2002) Triactinomyxon production as related to rearing substrate and diel light cycle. In: American Fisheries Society Symposium (pp. 87-92). American Fishes Society.
Bartholomew, J. L., Whipple, M. J., Stevens, D. G., & Fryer, J. L. (1997). The life cycle of Ceratomyxa shasta, a myxosporean parasite of salmonids, requires a freshwater polychaete as an alternate host. Journal of Parasitology, 83, 859-868. https://doi.org/10.2307/3284281
Bjork, S. J., & Bartholomew, J. L. (2009). Effects of Ceratomyxa shasta dose on a susceptible strain of rainbow trout and comparatively resistant Chinook and coho salmon. Diseases of Aquatic Organisms, 86, 29-37. https://doi.org/10.3354/dao02092
Braden, L. M., Rasmussen, K. J., Purcell, S. L., Ellis, L., Mahony, A., Cho, S., … Fast, M. D. (2018). Acquired protective immunity in Atlantic salmon Salmo salar against the myxozoan Kudoa thyrsites involves induction of MHII beta(+) CD83(+) antigen-presenting cells. Infection and Immunity, 86, e00556-e617. https://doi.org/10.1128/iai.00556-17
China, M., Nakamura, H., Hamakawa, K., Tamaki, E., Yokoyama, H., Masuoka, S., & Ogawa, K. (2014). Efficacy of high water temperature treatment of myxosporean emaciation disease caused by Enteromyxum leei (Myxozoa). Fish Pathology, 49, 137-140. https://doi.org/10.3147/jsfp.49.137
Clifton-Hadley, R. S., Bucke, D., & Richards, R. H. (1984). Proliferative kidney disease of salmonid fish: A review. Journal of Fish Diseases, 7, 14. https://doi.org/10.1111/j.13652761.1984.tb01201.x
Colloca, F., & Cerasi, S. (2009). Sparus aurata [Internet report]. Cultured aquatic species fact sheets (FAO). Retrieved from http://www.fao.org/tempref/FI/DOCUMENT/aquaculture/CulturedSpecies/file/en/en_giltheadseabr.htm
de Buron, I., Hill-Spanik, K. M., Haselden, L., Atkinson, S. D., Hallett, S. L., & Arnott, S. A. (2017). Infection dynamics of Kudoa inornata (Cnidaria: Myxosporea) in spotted seatrout Cynoscion nebulosus (Teleostei: Sciaenidae). Diseases of Aquatic Organisms, 127, 29-40. https://doi.org/10.3354/dao03174
Diamant, A. (1997). Fish-to-fish transmission of a marine myxosporean. Diseases of Aquatic Organisms, 30, 99-105. https://doi.org/10.3354/dao030099
Diamant, A., & Wajsbrot, N. (1997). Experimental transmission of Myxidium leei in gilthead sea bream Sparus aurata. Bulletin of the European Association of Fish Pathologists, 17, 99-103.
Estensoro, I., Redondo, M. J., Álvarez-Pellitero, P., & Sitjà-Bobadilla, A. (2010). Novel horizontal transmission route for Enteromyxum leei (Myxozoa) by anal intubation of gilthead sea bream Sparus aurata. Diseases of Aquatic Organisms, 92, 51-58. https://doi.org/10.3354/dao02267
Eszterbauer, E., Atkinson, S., Diamant, A., Morris, D., El-Matbouli, M., & Hartikainen, H. (2015). Myxozoan life cycles: Practical approaches and insights. In B. Okamura, A. Gruhl, & J. Bartholomew (Eds.), Myxozoan Evolution, Ecology and Development (pp. 175-198). Switzerland: Springer International Publishing.
Feist, S. W., Longshaw, M., Canning, E. U., & Okamura, B. (2001). Induction of proliferative kidney disease (PKD) in rainbow trout Oncorhynchus mykiss via the bryozoan Fredericella sultana infected with Tetracapsula bryosalmonae. Diseases of Aquatic Organisms, 45, 61-68. https://doi.org/10.3354/dao045061
Flecknell, P. (2002). Replacement, reduction and refinement. Altex, 19, 73-78.
Fontes, I., Hallett, S., & Mo, T. (2015). Comparative epidemiology of myxozoan diseases. In B. Okamura, A. Gruhl, & J. Bartholomew (Eds.), Myxozoan Evolution, Ecology and Development (pp. 317-341). Switzerland: Springer International Publishing.
Golomazou, E., Athanassopoulou, F., Karagouni, E., Tsagozis, P., Tsantilas, H., & Vagianou, S. (2006). Experimental transmission of Enteromyxum leei Diamant, Lom and Dyková, 1994 in sharpsnout sea bream, Diplodus puntazzo C. and the effect on some innate immune parameters. Aquaculture, 260, 44-53. https://doi.org/10.1016/j.aquaculture.2006.06.013
Gupta, A., & Kaur, H. (2017). A new pathogen, Myxobolus holzerae (Myxosporea: Myxozoa) causing severe gill disease in an Indian major carp Labeo rohita in a cold water wetland, Punjab (India). Microbial Pathogenesis, 111, 244-251. https://doi.org/10.1016/j.micpath.2017.08.044
Hallett, S., & Bartholomew, J. (2008). Effects of water flow on the infection dynamics of Myxobolus cerebralis. Parasitology, 135, 371-384. https://doi.org/10.1017/S0031182007003976
Jones, S., & Long, A. (2019). Host size influences prevalence and severity of Kudoa thyrsites (Cnidaria: Myxosporea) infection in Atlantic salmon Salmo salar. Diseases of Aquatic Organisms, 133, 99-105. https://doi.org/10.3354/dao03335
Korytář, T., Wiegertjes, G. F., Zusková, E., Tomanová, A., Lisnerová, M., Patra, S., … Holzer, A. S. (2019). The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasites and Vectors, 12, 208-208. https://doi.org/10.1186/s13071-019-3462-3
Le Morvan, C., Troutaud, D., & Deschaux, P. (1998). Differential effects of temperature on specific and nonspecific immune defences in fish. The Journal of Experimental Biology, 201, 165-168.
Markiw, M. E. (1989). Portals of entry for salmonid whirling disease in rainbow trout. Diseases of Aquatic Organisms, 6, 7-10. https://doi.org/10.3354/dao006007
Markiw, M. E., & Wolf, K. (1983). Myxosoma cerebralis (Myxozoa: Myxosporea) etiologic agent of salmonid whirling disease requires tubificid worm (Annelida: Oligochaeta) in its life cycle. The Journal of Protozoology, 30, 561-564. https://doi.org/10.1111/j.1550-7408.1983.tb01422.x
Muñoz, P., Cuesta, A., Athanassopoulou, F., Golomazou, H., Crespo, S., Padrós, F., … Meseguer, J. (2007). Sharpsnout sea bream (Diplodus puntazzo) humoral immune response against the parasite Enteromyxum leei (Myxozoa). Fish and Shellfish Immunology, 23, 636-645. https://doi.org/10.1016/j.fsi.2007.01.014
Palikova, M., Papezikova, I., Markova, Z., Navratil, S., Mares, J., Mares, L., … Schmidt-Posthaus, H. (2017). Proliferative kidney disease in rainbow trout (Oncorhynchus mykiss) under intensive breeding conditions: Pathogenesis and haematological and immune parameters. Veterinary Parasitology, 238, 5-16. https://doi.org/10.1016/j.vetpar.2017.03.003
Piazzon, M. C., Calduch-Giner, J. A., Fouz, B., Estensoro, I., Simó-Mirabet, P., Puyalto, M., … Pérez-Sánchez, J. (2017). Under control: How a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 5, 164. https://doi.org/10.1186/s40168-017-0390-3
Piazzon, M. C., Galindo-Villegas, J., Pereiro, P., Estensoro, I., Calduch-Giner, J. A., Gómez-Casado, E., … Pérez-Sánchez, J. (2016). Differential modulation of IgT and IgM upon parasitic, bacterial, viral, and dietary challenges in a perciform fish. Frontiers in Immunology, 7, 637. https://doi.org/10.3389/fimmu.2016.00637
Picard-Sánchez, A., Estensoro, I., Del Pozo, R., Piazzon, M. C., Palenzuela, O., & Sitjà-Bobadilla, A. (2019). Acquired protective immune response in a fish-myxozoan model encompasses specific antibodies and inflammation resolution. Fish and Shellfish Immunology, 90, 349-362. https://doi.org/10.1016/j.fsi.2019.04.300
Ray, R. A., & Bartholomew, J. L. (2013). Estimation of transmission dynamics of the Ceratomyxa shasta actinospore to the salmonid host. Parasitology, 140, 907-916. https://doi.org/10.1017/s0031182013000127
Ray, R. A., Holt, R. A., & Bartholomew, J. L. (2012). Relationship between temperature and Ceratomyxa shasta-induced mortality in Klamath River salmonids. Journal of Parasitology, 98, 520-526. https://doi.org/10.1645/JP-GE-2737.1
Redondo, M. J., Palenzuela, O., & Álvarez-Pellitero, P. (2004). Studies on transmission and life cycle of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot Scophthalmus maximus. Folia Parasitologica, 51, 188-198. https://doi.org/10.14411/fp.2004.022
Redondo, M. J., Palenzuela, O., Riaza, A., Macías, A., & Alvarez-Pellitero, P. (2002). Experimental transmission of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot Scophthalmus maximus. Journal of Parasitology, 88, 482-488. https://doi.org/10.1645/0022-3395(2002)088[0482:ETOESM]2.0.CO;2
Shin, S. P., Sohn, H. C., Jin, C. N., Kang, B. J., & Lee, J. (2018). Molecular diagnostics for verifying an etiological agent of emaciation disease in cultured olive flounder Paralichthys olivaceus in Korea. Aquaculture, 493, 18-25. https://doi.org/10.1016/j.aquaculture.2018.04.041
Sitjà-Bobadilla, A., Diamant, A., Palenzuela, O., & Álvarez-Pellitero, P. (2007). Effect of host factors and experimental conditions on the horizontal transmission of Enteromyxum leei (Myxozoa) to gilthead sea bream, Sparus aurata L., and European sea bass, Dicentrarchus labrax (L.). Journal of Fish Diseases, 30, 243-250. https://doi.org/10.1111/j.1365-2761.2007.00804.x
Sitjà-Bobadilla, A., & Palenzuela, O. (2012). Enteromyxum Species. In P. T. K. Woo, & K. Buchmann (Eds.), Fish Parasites: Pathology and Protection (pp. 163-176). Denmark: CAB International, Oxfordshire UK.
Thompson, J. B., Snekvik, K. R., & Vincent, E. R. (2010). The Effects of Myxobolus cerebralis on apache and gila trout in laboratory exposures. Journal of Aquatic Animal Health, 22, 87-91. https://doi.org/10.1577/H09-007.1
Tops, S., Lockwood, W., & Okamura, B. (2006). Temperature-driven proliferation of Tetracapsuloides bryosalmonae in bryozoan hosts portends salmonid declines. Diseases of Aquatic Organisms, 70, 227-236. https://doi.org/10.3354/dao070227
Udey, L. R., Fryer, J. L., & Pilcher, K. S. (1975). Relation of water temperature to ceratomyxosis in rainbow trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch). Journal of the Fisheries Research Board of Canada, 32, 1545-1551. https://doi.org/10.1139/f75-181
Yanagida, T., Palenzuela, O., Hirae, T., Tanaka, S., Yokoyama, H., & Ogawa, K. (2008). Myxosporean emaciation disease of cultured red sea bream Pagrus major and spotted knifejaw Oplegnathus punctatus. Fish Pathology, 43, 45-48. https://doi.org/10.3147/jsfp.43.45
Yanagida, T., Sameshima, M., Nasu, H., Yokoyama, H., & Ogawa, K. (2006). Temperature effects on the development of Enteromyxum spp. (Myxozoa) in experimentally infected tiger puffer, Takifugu rubripes (Temminck & Schlegel). Journal of Fish Diseases, 29, 561-567. https://doi.org/10.1111/j.1365-2761.2006.00752.x
Yasuda, H., Ooyama, T., Iwata, K., Tun, T., Yokoyama, H., & Ogawa, K. (2002). Fish-to-fish transmission of Myxidium spp. (Myxozoa) in cultured tiger puffer suffering from emaciation disease. Fish Pathology, 37, 29-33. https://doi.org/10.3147/jsfp.37.29
Yasuda, H., Ooyama, T., Nakamura, A., Iwata, K., Palenzuela, O., & Yokoyama, H. (2005). Occurrence of the myxosporean emaciation disease caused by Enteromyxum leei in cultured Japanese flounder Paralichthys olivaceus. Fish Pathology, 40, 175-180. https://doi.org/10.3147/jsfp.40.175
Yokoyama, H. (2003). A review: Gaps in our knowledge on Myxozoan parasites of fishes. Fish Pathology, 38, 125-136. https://doi.org/10.3147/jsfp.38.125
Yokoyama, H., Grabner, D., & Shirakashi, S. (2012). Transmission biology of the Myxozoa. In E. D. Carvalho, G. Silva, & R. J. Silva (Eds.), Health and Environment in Aquaculture (pp. 1-42). Rijeka: IntechOpen.
Zinkernagel, R. M., Ehl, S., Aichele, P., Oehen, S., Kündig, T., & Hengartner, H. (1997). Antigen localisation regulates immune responses in a dose- and time-dependent fashion: A geographical view of immune reactivity. Immunological Reviews, 156, 199-209. https://doi.org/10.1111/j.1600-065X.1997.tb00969.x