Deconvoluting Wavelengths Leading to Fluorescent Light Induced Inflammation and Cellular Stress in Zebrafish (Danio rerio).
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 02 2020
24 02 2020
Historique:
received:
10
12
2019
accepted:
23
01
2020
entrez:
26
2
2020
pubmed:
26
2
2020
medline:
12
11
2020
Statut:
epublish
Résumé
Fluorescent light (FL) has been shown to induce a cellular immune and inflammatory response that is conserved over 450 MY of evolutionary divergence and among vertebrates having drastically different lifestyles such as Mus musculus, Danio rerio, Oryzias latipes and Xiphophorus maculatus. This surprising finding of an inflammation and immune response to FL not only holds for direct light receiving organs (skin) but is also observed within internal organs (brain and liver). Light responsive genetic circuitry initiated by the IL1B regulator induces a highly conserved acute phase response in each organ assessed for all of biological models surveyed to date; however, the specific light wavelengths triggering this response have yet to be determined so investigation of mechanisms and/or light specific molecule(s) leading to this response are difficult to assess. To understand how specific light wavelengths are received in both external and internal organs, zebrafish were exposed to specific 50 nm light wavebands spanning the visible spectrum from 300-600 nm and the genetic responses to each waveband exposure were assessed. Surprisingly, the induced cellular stress response previously observed following FL exposure is not triggered by the lower "damaging" wavelengths of light (UVB and UVA from 300-400 nm) but instead is maximally induced by higher wavelengths ranging from 450-500 nm in skin to 500-600 nm in both brain and liver).
Identifiants
pubmed: 32094353
doi: 10.1038/s41598-020-59502-5
pii: 10.1038/s41598-020-59502-5
pmc: PMC7039929
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3321Subventions
Organisme : NCI NIH HHS
ID : R15 CA223964
Pays : United States
Organisme : NIH HHS
ID : R24 OD011120
Pays : United States
Références
Boswell, M. et al. The transcriptional response of skin to fluorescent light exposure in viviparous (Xiphophorus) and oviparous (Danio, Oryzias) fishes. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 208, 77–86, https://doi.org/10.1016/j.cbpc.2017.10.003 (2018).
doi: 10.1016/j.cbpc.2017.10.003
Boswell, M. et al. Fluorescent Light Incites a Conserved Immune and Inflammatory Genetic Response within Vertebrate Organs (Danio rerio, Oryzias latipes and Mus musculus). Genes. 10(4), 271, https://doi.org/10.3390/genes10040271 (2019).
doi: 10.3390/genes10040271
pmcid: 6523474
Walter, R. B. et al. Waveband specific transcriptional control of select genetic pathways in vertebrate skin (Xiphophorus maculatus). BMC Genomics. 19, 355–372, https://doi.org/10.1186/s12864-018-4735-5 (2018).
doi: 10.1186/s12864-018-4735-5
pubmed: 29747585
pmcid: 5946439
Chang, J. et al. Molecular genetic response to varied wavelengths of light in Xiphophorus maculatus skin. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 178, 104–115, https://doi.org/10.1016/j.cbpc.2015.10.002 (2015).
doi: 10.1016/j.cbpc.2015.10.002
Boswell, W. T. et al. Exposure to 4100 K fluorescent light elicits sex specific transcriptional responses in Xiphophorus maculatus skin. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 208, 96–104, https://doi.org/10.1016/j.cbpc.2017.09.008 (2018).
doi: 10.1016/j.cbpc.2017.09.008
Gonzalez, T. J. et al. Fluorescent light exposure incites acute and prolonged immune responses in zebrafish (Danio rerio) skin. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 208, 87–95, https://doi.org/10.1016/j.cbpc.2017.09.009 (2018).
doi: 10.1016/j.cbpc.2017.09.009
Walter, R. B. et al. Exposure to fluorescent light triggers down regulation of genes involved with mitotic progression in Xiphophorus skin. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 178, 93–103, https://doi.org/10.1016/j.cbpc.2015.08.006 (2015).
doi: 10.1016/j.cbpc.2015.08.006
Djurdjevič, I., Kreft, M. E. & Sušnik Bajec, S. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids. Journal of anatomy. 227(5), 583–595, https://doi.org/10.1111/joa.12373 (2015).
doi: 10.1111/joa.12373
pubmed: 26467239
pmcid: 4609195
Lister, J. A. Development of pigment cells in the zebrafish embryo. Microsc. Res. Tech. 58(6), 435–441, https://doi.org/10.1002/jemt.10161 (2002).
doi: 10.1002/jemt.10161
pubmed: 12242700
Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Phil. Trans. R. Soc. Lond. B Biol. Sci. 372(1724), 20160536, https://doi.org/10.1098/rstb.2016.0536 (2017).
doi: 10.1098/rstb.2016.0536
Kennis, J. T. & Mathes, T. Molecular eyes: proteins that transform light into biological information. Interface focus. 3(5), 20130005, https://doi.org/10.1098/rsfs.2013.0005 (2013).
doi: 10.1098/rsfs.2013.0005
pubmed: 24511384
pmcid: 3915823
Liu, Q. et al. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat. Commun. 8, 15234, https://doi.org/10.1038/ncomms15234 (2017).
doi: 10.1038/ncomms15234
pubmed: 28492234
pmcid: 5437284
Nielsen, C., Nørby, M. S., Kongsted, J. & Solov’yov, I. A. Absorption Spectra of FAD Embedded in Cryptochromes. J. Phys. Chem. Lett. 9(13), 3618–3623, https://doi.org/10.1021/acs.jpclett.8b01528 (2018).
doi: 10.1021/acs.jpclett.8b01528
pubmed: 29905481
Elvidge, C. D., Keith, D. M., Tuttle, B. T. & Baugh, K. E. Spectral Identification of Lighting Type and character. Sensors. 10(4), 3961–3988, https://doi.org/10.3390/s100403961 (2010).
doi: 10.3390/s100403961
pubmed: 22319336
Braasch, I., Schartl, M. & Volff, J. N. Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol. Biol. 7, 74, https://doi.org/10.1186/1471-2148-7-74 (2007).
doi: 10.1186/1471-2148-7-74
pubmed: 17498288
pmcid: 1890551
Kottler, V. A. et al. Multiple pigment cell types contribute to the black, blue, and orange ornaments of male guppies (Poecilia reticulata). PloS one. 9(1), e85647, https://doi.org/10.1371/journal.pone.0085647 (2014).
doi: 10.1371/journal.pone.0085647
pubmed: 24465632
pmcid: 3899072
Chichorek, M., Wachulska, M., Stasiewicz, A. & Tyminska, A. Skin melanocytes: biology and development. Postepy. Dermatol. Alergol. 30(1), 30–41, https://doi.org/10.5114/pdia.2013.33376 (2013).
doi: 10.5114/pdia.2013.33376
Ou-Yang, H., Stamatas, G. & Kollias, N. Spectral responses of melanin to ultraviolet A irradiation. J. Investig. Dermatol. 122(2), 492–496, https://doi.org/10.1046/j.0022-202X.2004.22247.x (2004).
doi: 10.1046/j.0022-202X.2004.22247.x
pubmed: 15009735
Ligon, R. A. & McCartney, K. L. Biochemical regulation of pigment motility in vertebrate chromatophores: a review of physiological color change mechanisms. Current zoology. 62(3), 237–252, https://doi.org/10.1093/cz/zow051 (2016).
doi: 10.1093/cz/zow051
pubmed: 29491911
pmcid: 5804272
Oshima, N. Direct reception of light chromatophores of lower vertebrates. Pigment cell and Melanoma Research. 14(5), 312–319, https://doi.org/10.1034/j.1600-0749.2001.140502.x (2002).
doi: 10.1034/j.1600-0749.2001.140502.x
Whitmore, D., Foulkes, N. S. & Sassone-Corsi, P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature. 404, 87–91, https://doi.org/10.1038/35003589 (2000).
doi: 10.1038/35003589
pubmed: 10716448
Garcia, T. I. et al. RNA-Seq reveals complex genetic response to Deepwater Horizon oil release in Fundulus grandis. BMC Genom. 13, 474, https://doi.org/10.1186/1471-2164-13-474 (2012).
doi: 10.1186/1471-2164-13-474
Kim, D. et al. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36, https://doi.org/10.1186/gb-2013-14-4-r36 (2013).
doi: 10.1186/gb-2013-14-4-r36
pubmed: 4053844
pmcid: 4053844
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).
doi: 10.1093/bioinformatics/btp352
pubmed: 19505943
pmcid: 2723002
Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30, 923–930, https://doi.org/10.1093/bioinformatics/btt656 (2014).
doi: 10.1093/bioinformatics/btt656
pubmed: 24227677
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26, 139–140, https://doi.org/10.1093/bioinformatics/btp616 (2010).
doi: 10.1093/bioinformatics/btp616
pubmed: 19910308
Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 16(1), 169, https://doi.org/10.1186/s12859-015-0611-3 (2015).
doi: 10.1186/s12859-015-0611-3
pubmed: 25994840
pmcid: 4455604
Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325, https://doi.org/10.1038/nbt1385 (2008).
doi: 10.1038/nbt1385
pubmed: 18278033