Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system.
Journal
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
03
07
2019
accepted:
13
02
2020
revised:
10
02
2020
pubmed:
23
2
2020
medline:
24
6
2021
entrez:
21
2
2020
Statut:
ppublish
Résumé
Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits.
Identifiants
pubmed: 32079024
doi: 10.1038/s41386-020-0643-x
pii: 10.1038/s41386-020-0643-x
pmc: PMC7608117
doi:
Substances chimiques
Analgesics, Opioid
0
Pharmaceutical Preparations
0
Morphine
76I7G6D29C
Dopamine
VTD58H1Z2X
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1781-1792Subventions
Organisme : NIDA NIH HHS
ID : T32 DA007234
Pays : United States
Organisme : NIDA NIH HHS
ID : K99 DA037279
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA048946
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
ID : DA007234
Pays : International
Références
Valentino RJ, Volkow ND. Untangling the complexity of opioid receptor function. Neuropsychopharmacol. 2018;43:2514–20.
doi: 10.1038/s41386-018-0225-3
Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? Nat Rev Neurosci. 2018;19:499–514.
pubmed: 29934561
doi: 10.1038/s41583-018-0028-x
David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P. Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacol. 2008;33:1746–59.
doi: 10.1038/sj.npp.1301529
Olds ME. Reinforcing effects of morphine in the nucleus accumbens. Brain Res. 1982;237:429–40.
pubmed: 7083004
doi: 10.1016/0006-8993(82)90454-1
Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA. 1988;85:5274–8.
pubmed: 2899326
pmcid: 281732
doi: 10.1073/pnas.85.14.5274
Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L, Pascoli V, et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife. 2018;7:e39945.
Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PR. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci. 2015;16:305–12.
pubmed: 25873042
doi: 10.1038/nrn3939
Spagnolo PA, Kimes A, Schwandt ML, Shokri-Kojori E, Thada S, Phillips KA, et al. Striatal dopamine release in response to morphine: a [(11)C]raclopride positron emission tomography study in healthy men. Biol Psychiatry 2019;86:356–64.
pubmed: 31097294
pmcid: 6699765
doi: 10.1016/j.biopsych.2019.03.965
Badiani A, Belin D, Epstein D, Calu D, Shaham Y. Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci. 2011;12:685–700.
pubmed: 21971065
pmcid: 3721140
doi: 10.1038/nrn3104
Nestler EJ, Luscher C. The molecular basis of drug addiction: linking epigenetic to synaptic and circuit mechanisms. Neuron. 2019;102:48–59.
pubmed: 30946825
pmcid: 6587180
doi: 10.1016/j.neuron.2019.01.016
Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacol. 2019;44:465–77.
doi: 10.1038/s41386-018-0234-2
Kruyer A, Chioma VC, Kalivas PW. The opioid-addicted tetrapartite synapse. Biol Psychiatry 2020;87:34–43.
pubmed: 31378302
doi: 10.1016/j.biopsych.2019.05.025
Peltz G, Sudhof TC. The neurobiology of opioid addiction and the potential for prevention strategies. JAMA. 2018;319:2071–72.
pubmed: 29710202
doi: 10.1001/jama.2018.3394
Nelson LR, Ellison G. Enhanced stereotypies after repeated injections but not continuous amphetamines. Neuropharmacology. 1978;17:1081–4.
pubmed: 570650
doi: 10.1016/0028-3908(78)90045-X
Reith ME, Benuck M, Lajtha A. Cocaine disposition in the brain after continuous or intermittent treatment and locomotor stimulation in mice. J Pharm Exp Ther. 1987;243:281–7.
King GR, Joyner C, Lee T, Kuhn C, Ellinwood EH Jr. Intermittent and continuous cocaine administration: residual behavioral states during withdrawal. Pharm Biochem Behav. 1992;43:243–8.
doi: 10.1016/0091-3057(92)90664-2
Gao WY, Lee TH, King GR, Ellinwood EH. Alterations in baseline activity and quinpirole sensitivity in putative dopamine neurons in the substantia nigra and ventral tegmental area after withdrawal from cocaine pretreatment. Neuropsychopharmacol. 1998;18:222–32.
doi: 10.1016/S0893-133X(97)00132-2
Breese GR, Knapp DJ, Overstreet DH. Stress sensitization of ethanol withdrawal-induced reduction in social interaction: inhibition by CRF-1 and benzodiazepine receptor antagonists and a 5-HT1A-receptor agonist. Neuropsychopharmacol. 2004;29:470–82.
doi: 10.1038/sj.npp.1300282
Hope BT, Crombag HS, Jedynak JP, Wise RA. Neuroadaptations of total levels of adenylate cyclase, protein kinase A, tyrosine hydroxylase, cdk5 and neurofilaments in the nucleus accumbens and ventral tegmental area do not correlate with expression of sensitized or tolerant locomotor responses to cocaine. J Neurochem. 2005;92:536–45.
pubmed: 15659224
doi: 10.1111/j.1471-4159.2004.02891.x
Zimmer BA, Oleson EB, Roberts DC. The motivation to self-administer is increased after a history of spiking brain levels of cocaine. Neuropsychopharmacol. 2012;37:1901–10.
doi: 10.1038/npp.2012.37
Calipari ES, Ferris MJ, Zimmer BA, Roberts DC, Jones SR. Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacol. 2013;38:2385–92.
doi: 10.1038/npp.2013.136
Calipari ES, Siciliano CA, Zimmer BA, Jones SR. Brief intermittent cocaine self-administration and abstinence sensitizes cocaine effects on the dopamine transporter and increases drug seeking. Neuropsychopharmacol. 2015;40:728–35.
doi: 10.1038/npp.2014.238
Allain F, Samaha AN. Revisiting long-access versus short-access cocaine self-administration in rats: intermittent intake promotes addiction symptoms independent of session length. Addict Biol. 2019;24:641–51.
pubmed: 29920865
doi: 10.1111/adb.12629
Nicolas C, Russell TI, Pierce AF, Maldera S, Holley A, You ZB, et al. Incubation of cocaine craving after intermittent-access self-administration: sex differences and estrous Cycle. Biol Psychiatry. 2019;85:915–24.
pubmed: 30846301
pmcid: 6534474
doi: 10.1016/j.biopsych.2019.01.015
Kawa AB, Valenta AC, Kennedy RT, Robinson TE. Incentive and dopamine sensitization produced by intermittent but not long access cocaine self-administration. Eur J Neurosci. 2019;50:2663–82.
pubmed: 30968487
pmcid: 6742545
doi: 10.1111/ejn.14418
Post RM. Intermittent versus continuous stimulation: effect of time interval on the development of sensitization or tolerance. Life Sci. 1980;26:1275–82.
pubmed: 6991841
doi: 10.1016/0024-3205(80)90085-5
Marie N, Canestrelli C, Noble F. Role of pharmacokinetic and pharmacodynamic parameters in neuroadaptations induced by drugs of abuse, with a focus on opioids and psychostimulants. Neurosci Biobehav Rev. 2019;106:217–26.
pubmed: 30340773
doi: 10.1016/j.neubiorev.2018.06.006
Kawa AB, Allain F, Robinson TE, Samaha AN. The transition to cocaine addiction: the importance of pharmacokinetics for preclinical models. Psychopharmacol (Berl). 2019;236:1145–57.
doi: 10.1007/s00213-019-5164-0
Spanagel R, Almeida OF, Shippenberg TS. Long lasting changes in morphine-induced mesolimbic dopamine release after chronic morphine exposure. Synapse 1993;14:243–5.
pubmed: 8211708
doi: 10.1002/syn.890140307
Nestby P, Vanderschuren LJ, De Vries TJ, Hogenboom F, Wardeh G, Mulder AH, et al. Ethanol, like psychostimulants and morphine, causes long-lasting hyperreactivity of dopamine and acetylcholine neurons of rat nucleus accumbens: possible role in behavioural sensitization. Psychopharmacol (Berl). 1997;133:69–76.
doi: 10.1007/s002130050373
Mazei-Robison MS, Koo JW, Friedman AK, Lansink CS, Robison AJ, Vinish M, et al. Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons. Neuron. 2011;72:977–90.
pubmed: 22196333
pmcid: 3246191
doi: 10.1016/j.neuron.2011.10.012
Shippenberg TS, Emmett-Oglesby MW, Ayesta FJ, Herz A. Tolerance and selective cross-tolerance to the motivational effects of opioids. Psychopharmacol (Berl). 1988;96:110–5.
doi: 10.1007/BF02431542
Lett BT. Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacol (Berl). 1989;98:357–62.
doi: 10.1007/BF00451687
Gaiardi M, Bartoletti M, Bacchi A, Gubellini C, Costa M, Babbini M. Role of repeated exposure to morphine in determining its affective properties: place and taste conditioning studies in rats. Psychopharmacol (Berl). 1991;103:183–6.
doi: 10.1007/BF02244201
Shippenberg TS, Heidbreder C, Lefevour A. Sensitization to the conditioned rewarding effects of morphine: pharmacology and temporal characteristics. Eur J Pharm. 1996;299:33–9.
doi: 10.1016/0014-2999(95)00852-7
Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A, et al. IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci. 2007;10:93–9.
pubmed: 17143271
doi: 10.1038/nn1812
Sun L, Hu L, Li Y, Cui C. Mesoaccumbens dopamine signaling alteration underlies behavioral transition from tolerance to sensitization to morphine rewarding properties during morphine withdrawal. Brain Struct Funct. 2014;219:1755–71.
pubmed: 23775491
doi: 10.1007/s00429-013-0599-2
Yu G, Zhang FQ, Tang SE, Lai MJ, Su RB, Gong ZH. Continuous infusion versus intermittent bolus dosing of morphine: A comparison of analgesia, tolerance, and subsequent voluntary morphine intake. J Psychiatr Res. 2014;59:161–66.
pubmed: 25193460
doi: 10.1016/j.jpsychires.2014.08.009
Vanderschuren LJ, Tjon GH, Nestby P, Mulder AH, Schoffelmeer AN, De Vries TJ. Morphine-induced long-term sensitization to the locomotor effects of morphine and amphetamine depends on the temporal pattern of the pretreatment regimen. Psychopharmacol (Berl). 1997;131:115–22.
doi: 10.1007/s002130050273
Eitan S, Bryant CD, Saliminejad N, Yang YC, Vojdani E, Keith D Jr., et al. Brain region-specific mechanisms for acute morphine-induced mitogen-activated protein kinase modulation and distinct patterns of activation during analgesic tolerance and locomotor sensitization. J Neurosci 2003;23:8360–9.
pubmed: 12967998
pmcid: 6740691
doi: 10.1523/JNEUROSCI.23-23-08360.2003
Contet C, Filliol D, Matifas A, Kieffer BL. Morphine-induced analgesic tolerance, locomotor sensitization and physical dependence do not require modification of mu opioid receptor, cdk5 and adenylate cyclase activity. Neuropharmacology. 2008;54:475–86.
pubmed: 18082850
doi: 10.1016/j.neuropharm.2007.10.015
Rothwell PE, Gewirtz JC, Thomas MJ. Episodic withdrawal promotes psychomotor sensitization to morphine. Neuropsychopharmacol. 2010;35:2579–89.
doi: 10.1038/npp.2010.134
Le Marec T, Marie-Claire C, Noble F, Marie N. Chronic and intermittent morphine treatment differently regulates opioid and dopamine systems: a role in locomotor sensitization. Psychopharmacol (Berl). 2011;216:297–303.
doi: 10.1007/s00213-011-2223-6
Ackerman SJ, Mordin M, Reblando J, Xu X, Schein J, Vallow S, et al. Patient-reported utilization patterns of fentanyl transdermal system and oxycodone hydrochloride controlled-release among patients with chronic nonmalignant pain. J Manag Care Pharm. 2003;9:223–31.
pubmed: 14613465
doi: 10.18553/jmcp.2003.9.3.223
Dole VP, Nyswander ME, Kreek MJ. Narcotic blockade. Arch Intern Med. 1966;118:304–9.
pubmed: 4162686
doi: 10.1001/archinte.1966.00290160004002
Houshyar H, Gomez F, Manalo S, Bhargava A, Dallman MF. Intermittent morphine administration induces dependence and is a chronic stressor in rats. Neuropsychopharmacol. 2003;28:1960–72.
doi: 10.1038/sj.npp.1300271
Evans CJ, Cahill CM. Neurobiology of opioid dependence in creating addiction vulnerability. F1000Res. 2016;5:1748.
Lee K, Vuong HE, Nusbaum DJ, Hsiao EY, Evans CJ, Taylor AMW. The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacol. 2018;43:2606–14.
doi: 10.1038/s41386-018-0211-9
Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 1996;383:819–23.
pubmed: 8893006
doi: 10.1038/383819a0
Backman CM, Malik N, Zhang Y, Shan L, Grinberg A, Hoffer BJ, et al. Characterization of a mouse strain expressing Cre recombinase from the 3’ untranslated region of the dopamine transporter locus. Genesis. 2006;44:383–90.
pubmed: 16865686
doi: 10.1002/dvg.20228
Lichtblau L, Sparber SB. Opiate withdrawal in utero increases neonatal morbidity in the rat. Science. 1981;212:943–5.
pubmed: 7195068
doi: 10.1126/science.7195068
Pravetoni M, Le Naour M, Harmon TM, Tucker AM, Portoghese PS, Pentel PR. An Oxycodone conjugate vaccine elicits drug-specific antibodies that reduce oxycodone distribution to brain and hot-plate analgesia. J Pharm Exp Ther. 2012;341:225–32.
doi: 10.1124/jpet.111.189506
Baruffaldi F, Kelcher AH, Laudenbach M, Gradinati V, Limkar A, Roslawski M, et al. Preclinical efficacy and characterization of candidate vaccines for treatment of opioid use disorders using clinically viable carrier proteins. Mol Pharm. 2018;15:4947–62.
pubmed: 30240216
pmcid: 6361123
doi: 10.1021/acs.molpharmaceut.8b00592
Pisansky MT, Lefevre EM, Retzlaff CL, Trieu BH, Leipold DW, Rothwell PE. Nucleus accumbens fast-spiking interneurons constrain impulsive action. Biol Psychiatry. 2019;86:836–47.
pubmed: 31471038
pmcid: 6823148
doi: 10.1016/j.biopsych.2019.07.002
Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Pena CJ, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci USA. 2016;113:2726–31.
pubmed: 26831103
pmcid: 4791010
doi: 10.1073/pnas.1521238113
Cui Y, Ostlund SB, James AS, Park CS, Ge W, Roberts KW, et al. Targeted expression of mu-opioid receptors in a subset of striatal direct-pathway neurons restores opiate reward. Nat Neurosci. 2014;17:254–61.
pubmed: 24413699
pmcid: 4008330
doi: 10.1038/nn.3622
Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science. 2018;360:eaat4422.
Mohebi A, Pettibone JR, Hamid AA, Wong JT, Vinson LT, Patriarchi T, et al. Dissociable dopamine dynamics for learning and motivation. Nature. 2019;570:65–70.
pubmed: 31118513
pmcid: 6555489
doi: 10.1038/s41586-019-1235-y
Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. Independent optical excitation of distinct neural populations. Nat Methods. 2014;11:338–46.
pubmed: 24509633
pmcid: 3943671
doi: 10.1038/nmeth.2836
Robinson JE, Coughlin GM, Hori AM, Cho JR, Mackey ED, Turan Z, et al. Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis type 1. Elife. 2019;8:e48983.
Koo JW, Mazei-Robison MS, Chaudhury D, Juarez B, LaPlant Q, Ferguson D, et al. BDNF is a negative modulator of morphine action. Science. 2012;338:124–28.
pubmed: 23042896
pmcid: 3547365
doi: 10.1126/science.1222265
Skupio U, Sikora M, Korostynski M, Wawrzczak-Bargiela A, Piechota M, Ficek J, et al. Behavioral and transcriptional patterns of protracted opioid self-administration in mice. Addict Biol. 2017;22:1802–16.
pubmed: 27578564
doi: 10.1111/adb.12449
Maldonado R, Blendy JA, Tzavara E, Gass P, Roques BP, Hanoune J, et al. Reduction of morphine abstinence in mice with a mutation in the gene encoding CREB. Science. 1996;273:657–9.
pubmed: 8662559
doi: 10.1126/science.273.5275.657
Barrot M, Olivier JD, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ, et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci USA. 2002;99:11435–40.
pubmed: 12165570
pmcid: 123274
doi: 10.1073/pnas.172091899
Garzon J, Lopez-Fando A, Sanchez-Blazquez P. The R7 subfamily of RGS proteins assists tachyphylaxis and acute tolerance at mu-opioid receptors. Neuropsychopharmacol. 2003;28:1983–90.
doi: 10.1038/sj.npp.1300263
Leck KJ, Bartlett SE, Smith MT, Megirian D, Holgate J, Powell KL, et al. Deletion of guanine nucleotide binding protein alpha z subunit in mice induces a gene dose dependent tolerance to morphine. Neuropharmacology. 2004;46:836–46.
pubmed: 15033343
doi: 10.1016/j.neuropharm.2003.11.024
Valverde O, Mantamadiotis T, Torrecilla M, Ugedo L, Pineda J, Bleckmann S, et al. Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacol. 2004;29:1122–33.
doi: 10.1038/sj.npp.1300416
Lopez-Fando A, Rodriguez-Munoz M, Sanchez-Blazquez P, Garzon J. Expression of neural RGS-R7 and Gbeta5 proteins in response to acute and chronic morphine. Neuropsychopharmacol. 2005;30:99–110.
doi: 10.1038/sj.npp.1300515
Walters CL, Godfrey M, Li X, Blendy JA. Alterations in morphine-induced reward, locomotor activity, and thermoregulation in CREB-deficient mice. Brain Res. 2005;1032:193–9.
pubmed: 15680959
doi: 10.1016/j.brainres.2004.11.013
Li S, Lee ML, Bruchas MR, Chan GC, Storm DR, Chavkin C. Calmodulin-stimulated adenylyl cyclase gene deletion affects morphine responses. Mol Pharmacol. 2006;70:1742–9.
pubmed: 16914643
doi: 10.1124/mol.106.025783
Zachariou V, Liu R, LaPlant Q, Xiao G, Renthal W, Chan GC, et al. Distinct roles of adenylyl cyclases 1 and 8 in opiate dependence: behavioral, electrophysiological, and molecular studies. Biol Psychiatry 2008;63:1013–21.
pubmed: 18222416
pmcid: 2442273
doi: 10.1016/j.biopsych.2007.11.021
Gaspari S, Purushothaman I, Cogliani V, Sakloth F, Neve RL, Howland D, et al. Suppression of RGSz1 function optimizes the actions of opioid analgesics by mechanisms that involve the Wnt/beta-catenin pathway. Proc Natl Acad Sci USA. 2018;115:E2085–E94.
pubmed: 29440403
pmcid: 5834666
doi: 10.1073/pnas.1707887115
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.
pubmed: 16646834
doi: 10.2202/1544-6115.1128
Marie-Claire C, Courtin C, Roques BP, Noble F. Cytoskeletal genes regulation by chronic morphine treatment in rat striatum. Neuropsychopharmacol. 2004;29:2208–15.
doi: 10.1038/sj.npp.1300513
Vanderschuren LJMJ, Kalivas PW. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology. 2000;151:99–120.
pubmed: 10972458
doi: 10.1007/s002130000493
Babbini M, Gaiardi M, Bartoletti M. Persistence of chronic morphine effects upon activity in rats 8 months after ceasing the treatment. Neuropharmacology. 1975;14:611–4.
pubmed: 1237099
doi: 10.1016/0028-3908(75)90129-X
Shuster L, Webster GW, Yu G. Increased running response to morphine in morphine-pretreated mice. J Pharm Exp Ther. 1975;192:64–7.
Bartoletti M, Gaiardi M, Gubellini G, Bacchi A, Babbini M. Long-term sensitization to the excitatory effects of morphine. A motility study in post-dependent rats. Neuropharmacology. 1983;22:1193–6.
pubmed: 6685823
doi: 10.1016/0028-3908(83)90080-1
Dalia AD, Norman MK, Tabet MR, Schlueter KT, Tsibulsky VL, Norman AB. Transient amelioration of the sensitization of cocaine-induced behaviors in rats by the induction of tolerance. Brain Res. 1998;797:29–34.
pubmed: 9630493
doi: 10.1016/S0006-8993(98)00323-0
Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18:247–91.
pubmed: 8401595
doi: 10.1016/0165-0173(93)90013-P
Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM. Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacol. 2005;30:853–63.
doi: 10.1038/sj.npp.1300619
McClung CA, Nestler EJ, Zachariou V. Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci. 2005;25:6005–15.
pubmed: 15976090
pmcid: 6724795
doi: 10.1523/JNEUROSCI.0062-05.2005
Hearing MC, Jedynak J, Ebner SR, Ingebretson A, Asp AJ, Fischer RA, et al. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proc Natl Acad Sci USA. 2016;113:757–62.
pubmed: 26739562
pmcid: 4725472
doi: 10.1073/pnas.1519248113
Graziane NM, Sun S, Wright WJ, Jang D, Liu Z, Huang YH, et al. Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nat Neurosci. 2016;19:915–25.
pubmed: 27239940
pmcid: 4925174
doi: 10.1038/nn.4313
Koo JW, Lobo MK, Chaudhury D, Labonte B, Friedman A, Heller E, et al. Loss of BDNF signaling in DIR-expressing NAc neurons enhances morphine reward by reducing GABA Inhibition. Neuropsychopharmacol. 2014;39:2646–53.
doi: 10.1038/npp.2014.118
Sun H, Maze I, Dietz DM, Scobie KN, Kennedy PJ, Damez-Werno D, et al. Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. J Neurosci. 2012;32:17454–64.
pubmed: 23197736
pmcid: 3516048
doi: 10.1523/JNEUROSCI.1357-12.2012
Abul-Husn NS, Annangudi SP, Ma’ayan A, Ramos-Ortolaza DL, Stockton SD, Gomes I, et al. Chronic morphine alters the presynaptic protein profile: identification of novel molecular targets using proteomics and network analysis. PLos ONE. 2011;6:e25535.
pubmed: 22043286
pmcid: 3197197
doi: 10.1371/journal.pone.0025535
Ammon-Treiber S, Grecksch G, Stumm R, Riechert U, Tischmeyer H, Reichenauer A, et al. Rapid, transient, and dose-dependent expression of Hsp70 messenger RNA in the rat brain after morphine treatment. Cell Stress Chaperon. 2004;9:182–97.
doi: 10.1379/CSC-42.1
Luo JA, Jing L, Qin WJ, Zhang M, Lawrence AJ, Chen F, et al. Transcription and protein synthesis inhibitors reduce the induction of behavioural sensitization to a single morphine exposure and regulate Hsp70 expression in the mouse nucleus accumbens. Int J Neuropsychoph. 2011;14:107–21.
doi: 10.1017/S146114571000057X
Sanchis-Segura C, Lopez-Atalaya JP, Barco A. Selective boosting of transcriptional and behavioral responses to drugs of abuse by histone deacetylase inhibition. Neuropsychopharmacol. 2009;34:2642–54.
doi: 10.1038/npp.2009.125
Avey D, Sankararaman S, Yim AKY, Barve R, Milbrandt J, Mitra RD. Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to Morphine by Glia. Cell Rep. 2018;24:3619–29 e4.
pubmed: 30257220
pmcid: 6357782
doi: 10.1016/j.celrep.2018.08.080
Solis E Jr., Afzal A, Kiyatkin EA. Opposing mechanisms underlying differential changes in brain oxygen and temperature induced by intravenous morphine. J Neurophysiol. 2018;120:2513–21.
pubmed: 30183460
pmcid: 6295537
doi: 10.1152/jn.00445.2018
Salas E, Bocos C, Del Castillo C, Perez-Garcia C, Morales L, Alguacil LF. Gene expression analysis of heat shock proteins in the nucleus accumbens of rats with different morphine seeking behaviours. Behav Brain Res. 2011;225:71–6.
pubmed: 21763353
doi: 10.1016/j.bbr.2011.06.034
Qin WJ, Wang YT, Zhang M, Wen RT, Liu Q, Li YL, et al. Molecular chaperone heat shock protein 70 participates in the labile phase of the development of behavioural sensitization induced by a single morphine exposure in mice. Int J Neuropsychoph. 2013;16:647–59.
doi: 10.1017/S1461145712000557
Wang YT, Qin WJ, Liu Q, Li YL, Liang H, Chen F, et al. Chaperone heat shock protein 70 in nucleus accumbens core: a novel biological target of behavioural sensitization to morphine in rats. Int J Neuropsychoph. 2014;17:469–84.
doi: 10.1017/S1461145713001429
Yang HY, Pu XP, Liu Y. Chronic morphine treatment induces over-expression of HSP70 in mice striatum related with abnormal ubiquitin-proteasome degradation. Drug Alcohol. Depend. 2014;139:53–9.
pubmed: 24685564
doi: 10.1016/j.drugalcdep.2014.03.005
Qin WJ, Wang YT, Li PM, Wang XX, Li JX, Noori HR, et al. Context- and time-dependent neurobiological and behavioral sensitization induced by a single morphine exposure in mice. Psychopharmacol (Berl). 2016;233:1147–55.
doi: 10.1007/s00213-015-4197-2
Luo FC, Qi L, Lv T, Wang SD, Liu H, Nakamura H, et al. Geranylgeranylacetone protects mice against morphine-induced hyperlocomotion, rewarding effect, and withdrawal syndrome. Free Radic Bio Med. 2012;52:1218–27.
doi: 10.1016/j.freeradbiomed.2012.01.004
Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:4–19.
pubmed: 28852220
doi: 10.1038/nrm.2017.73