Charge transfer as a ubiquitous mechanism in determining the negative charge at hydrophobic interfaces.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
14 Feb 2020
14 Feb 2020
Historique:
received:
28
05
2019
accepted:
22
01
2020
entrez:
16
2
2020
pubmed:
16
2
2020
medline:
16
2
2020
Statut:
epublish
Résumé
The origin of the apparent negative charge at hydrophobic-water interfaces has fueled debates in the physical chemistry community for decades. The most common interpretation given to explain this observation is that negatively charged hydroxide ions (OH
Identifiants
pubmed: 32060273
doi: 10.1038/s41467-020-14659-5
pii: 10.1038/s41467-020-14659-5
pmc: PMC7021814
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
901Références
Hunter, R. J. Zeta potential in colloid science (Elsevier, 1988).
Carruthers, J. C. The electrophoresis of certain hydrocarbons and their simple derivatives as a function of pH. Trans. Faraday Soc. 34, 300–307 (1938).
doi: 10.1039/tf9383400300
Takahashi, M. Zeta-potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. J. Phys. Chem. B 109, 21858–21864 (2005).
pubmed: 16853839
doi: 10.1021/jp0445270
pmcid: 16853839
Saykally, R. J. Two sides of the acid-base story. Nat. Chem. 5, 82 (2013).
pubmed: 23344441
doi: 10.1038/nchem.1556
pmcid: 23344441
Gray-Weale, A. & Beattie, J. K. An explanation for the charge on water’s surface. Phys. Chem. Chem. Phys. 11, 10994–11005 (2009).
pubmed: 19924335
doi: 10.1039/b901806a
pmcid: 19924335
Beattie, J. K., Djerdjev, A. M. & Warr, G. G. The surface of neat water is basic. Faraday Discuss. 141, 31–39 (2009).
pubmed: 19227349
doi: 10.1039/B805266B
pmcid: 19227349
Winter, B., Faubel, M., Vácha, R. & Jungwirth, P. Reply to comments on frontiers article: behavior of hydroxide at the water/vapor interface. Chem. Phys. Lett. 481, 19–21 (2009).
doi: 10.1016/j.cplett.2009.09.010
Mishra, H. et al. Brønsted basicity of the air-water interface. PNAS 109, 18679–18683 (2012).
pubmed: 23112167
doi: 10.1073/pnas.1209307109
pmcid: 23112167
Petersen, P. B. & Saykally, R. J. Evidence for an enhanced hydronium concentration at the liquid water surface. J. Phys. Chem. B 109, 7976–7980 (2005).
pubmed: 16851932
doi: 10.1021/jp044479j
pmcid: 16851932
Petersen, P. B. & Saykally, R. J. Is the liquid water surface basic or acidic? macroscopic vs. molecular-scale investigations. Chem. Phys. Lett. 458, 255–261 (2008).
doi: 10.1016/j.cplett.2008.04.010
Tian, C., Ji, N., Waychunas, G. A. & Shen, Y. R. Interfacial structures of acidic and basic aqueous solutions. J. Am. Chem. Soc. 130, 13033–13039 (2008).
pubmed: 18774819
doi: 10.1021/ja8021297
pmcid: 18774819
Tarbuck, T. L., Ota, S. T. & Richmond, G. L. Spectroscopic studies of solvated hydrogen and hydroxide ions at aqueous surfaces. J. Am. Chem. Soc. 128, 14519–14527 (2006).
pubmed: 17090035
doi: 10.1021/ja063184b
pmcid: 17090035
Gopalakrishnan, S., Liu, D., Allen, H. C., Kuo, M. & Shultz, M. J. Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem. Rev. 106, 1155–1175 (2006).
pubmed: 16608176
doi: 10.1021/cr040361n
pmcid: 16608176
Yan, X. et al. Central role of bicarbonate anions in charging water/hydrophobic interfaces. J. Phys. Chem. Lett. 9, 96–103 (2018).
pubmed: 29239612
doi: 10.1021/acs.jpclett.7b02993
pmcid: 29239612
Uematsu, Y., Bonthuis, D. J. & Netz, R. R. Charged surface-active impurities at nanomolar concentration induce jones-ray effect. J. Phys. Chem. Lett. 9, 189–193 (2018).
pubmed: 29261320
doi: 10.1021/acs.jpclett.7b02960
pmcid: 29261320
Okur, H. I., Drexler, C. I., Tyrode, E., Cremer, P. S. & Roke, S. The jones-ray effect is not caused by surface-active impurities. J. Phys. Chem. Lett. 9, 6739–6743 (2018).
pubmed: 30398354
pmcid: 6287224
doi: 10.1021/acs.jpclett.8b02957
Buch, V., Milet, A., Vácha, R., Jungwirth, P. & Devlin, J. P. Water surface is acidic. PNAS 104, 7342–7347 (2007).
pubmed: 17452650
doi: 10.1073/pnas.0611285104
pmcid: 17452650
Baer, M. D., Kuo, I.-F. W., Tobias, D. J. & Mundy, C. J. Toward a unified picture of the water self-ions at the air-water interface: a density functional theory perspective. J. Phys. Chem. B 118, 8364–8372 (2014).
pubmed: 24762096
doi: 10.1021/jp501854h
pmcid: 24762096
Mundy, C. J., Kuo, I.-F. W., Tuckerman, M. E., Lee, H.-S. & Tobias, D. J. Hydroxide anion at the air-water interface. Chem. Phys. Lett. 481, 2–8 (2009).
doi: 10.1016/j.cplett.2009.09.003
Petersen, M. K., Iyengar, S. S., Day, T. J. F. & Voth, G. A. The hydrated proton at the water liquid/vapor interface. J. Phys. Chem. B 108, 14804–14806 (2004).
doi: 10.1021/jp046716o
Tse, Y.-L. S., Chen, C., Lindberg, G. E., Kumar, R. & Voth, G. A. Propensity of hydrated excess protons and hydroxide anions for the air-water interface. J. Am. Chem. Soc. 137, 12610–12616 (2015).
pubmed: 26366480
doi: 10.1021/jacs.5b07232
pmcid: 26366480
Kumar, R., Knight, C. & Voth, G. A. Exploring the behaviour of the hydrated excess proton at hydrophobic interfaces. Faraday Discuss. 167, 263–278 (2013).
pubmed: 24640495
doi: 10.1039/c3fd00087g
pmcid: 24640495
Mamatkulov, S. I., Allolio, C., Netz, R. R. & Bonthuis, D. J. Orientation-induced adsorption of hydrated protons at the air-water interface. Angew Chem Int Ed 56, 15846–15851 (2017).
doi: 10.1002/anie.201707391
Gasparotto, P., Hassanali, A. A. & Ceriotti, M. Probing defects and correlations in the hydrogen-bond network of ab-initio water. J. Chem. Theory Comput. 12, 1953–1964 (2016).
pubmed: 26881726
doi: 10.1021/acs.jctc.5b01138
pmcid: 26881726
Vácha, R. et al. Charge transfer between water molecules as the possible origin of the observed charging at the surface of pure water. J Phys. Chem. Lett. 3, 107–111 (2012).
doi: 10.1021/jz2014852
Wick, C. D., Lee, A. J. & Rick, S. W. How intermolecular charge transfer influences the air-water interface. J. Chem. Phys. 137, 154701 (2012).
pubmed: 23083178
doi: 10.1063/1.4758457
pmcid: 23083178
Samson, J.-S., Scheu, R., Smolentsev, N., Rick, S. W. & Roke, S. Sum frequency spectroscopy of the hydrophobic nanodroplet/water interface: Absence of hydroxyl ion and dangling oh bond signatures. Chem. Phys. Lett. 615, 124–131 (2014).
doi: 10.1016/j.cplett.2014.09.034
Björneholm, O. et al. Water at interfaces. Chem. Rev. 116, 7698–7726 (2016).
pubmed: 27232062
doi: 10.1021/acs.chemrev.6b00045
pmcid: 27232062
Griffith, E. C. & Vaida, V. In situ observation of peptide bond formation at the water-air interface. PNAS 109, 15697–15701 (2012).
pubmed: 22927374
doi: 10.1073/pnas.1210029109
pmcid: 22927374
Mompeán, C. et al. Prebiotic chemistry in neutral/reduced-alkaline gas-liquid interfaces. Sci. Rep. 9, 1916 (2019).
pubmed: 30760732
pmcid: 6374446
doi: 10.1038/s41598-018-36579-7
Lin, Z.-H., Cheng, G., Lin, L., Lee, S. & Wang, Z. L. Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. 125, 12777–12781 (2013).
doi: 10.1002/ange.201307249
Willard, A. P. & Chandler, D. Instantaneous liquid interfaces. J. Phys. Chem. B 114, 1954–1958 (2010).
pubmed: 20055377
pmcid: 2834420
doi: 10.1021/jp909219k
Agmon, N. et al. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116, 7642–7672 (2016).
pubmed: 27314430
doi: 10.1021/acs.chemrev.5b00736
Kuo, I.-F. W. & Mundy, C. J. An ab initio molecular dynamics study of the aqueous liquid-vapor interface. Science 303, 658–660 (2004).
pubmed: 14752157
doi: 10.1126/science.1092787
Giberti, F. & Hassanali, A. A. The excess proton at the air-water interface: the role of instantaneous liquid interfaces. J. Chem. Phys. 146, 244703 (2017).
pubmed: 28668040
doi: 10.1063/1.4986082
Hsieh, C.-S. et al. Ultrafast reorientation of dangling oh groups at the air-water interface using femtosecond vibrational spectroscopy. Phys. Rev. Lett. 107, 116102 (2011).
pubmed: 22026687
doi: 10.1103/PhysRevLett.107.116102
Sun, S. et al. Orientational distribution of free o-h groups of interfacial water is exponential. Phys. Rev. Lett. 121, 246101 (2018).
pubmed: 30608741
doi: 10.1103/PhysRevLett.121.246101
Kühne, T. D. & Khaliullin, R. Z. Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water. Nat. Commun. 4, 1450 (2013).
pubmed: 23385594
doi: 10.1038/ncomms2459
pmcid: 23385594
Khaliullin, R., Bell, A. & Head-Gordon, M. Electron donation in the water-water hydrogen bond. Chem.: Eur. J. 15, 851–855 (2009).
doi: 10.1002/chem.200802107
Phipps, M. J. S., Fox, T., Tautermann, C. S. & Skylaris, C.-K. Intuitive density functional theory-based energy decomposition analysis for protein-ligand interactions. J. Chem. Theory Comput. 13, 1837–1850 (2017).
pubmed: 28245356
doi: 10.1021/acs.jctc.6b01230
pmcid: 28245356
Tang, W., Sanville, E. & Henkelman, G. A grid-based bader analysis algorithm without lattice bias. J. Phys. 21, 084204 (2009).
Bultinck, P., Van Alsenoy, C., Ayers, P. W. & Carbo-Dorca, R. Critical analysis and extension of the hirshfeld atoms in molecules. J. Chem. Phys. 126, 144111 (2007).
pubmed: 17444705
doi: 10.1063/1.2715563
pmcid: 17444705
Lillestolen, T. C. & Wheatley, R. J. Redefining the atom: atomic charge densities produced by an iterative stockholder approach. Chem. Commun. 45, 5909–5911 (2008).
doi: 10.1039/b812691g
Heidar-Zadeh, F. et al. Information-theoretic approaches to atoms-in-molecules: Hirshfeld family of partitioning schemes. J. Phys. Chem. 122, 4219–4245 (2018).
doi: 10.1021/acs.jpca.7b08966
Shin, S. & Willard, A. P. Three-body hydrogen bond defects contribute significantly to the dielectric properties of the liquid water-vapor interface. J. Phys. Chem. Lett. 9, 1649–1654 (2018).
pubmed: 29528654
doi: 10.1021/acs.jpclett.8b00488
pmcid: 29528654
Winter, B., Faubel, M., Vácha, R. & Jungwirth, P. Behavior of hydroxide at the water/vapor interface. Chem. Phys. Lett. 474, 241–247 (2009).
doi: 10.1016/j.cplett.2009.04.053
Ojha, D., Karhan, K. & Kühne, T. D. On the hydrogen bond strength and vibrational spectroscopy of liquid water. Sci. Rep. 8, 16888 (2018).
pubmed: 30443040
pmcid: 6237855
doi: 10.1038/s41598-018-35357-9
Ito, H., Hasegawa, T. & Tanimura, Y. Effects of intermolecular charge transfer in liquid water on raman spectra. J. Phys. Chem. Lett. 7, 4147–4151 (2016).
pubmed: 27689824
doi: 10.1021/acs.jpclett.6b01766
pmcid: 27689824
Baytekin, H. T. et al. The mosaic of surface charge in contact electrification. Science 333, 308–312 (2011).
pubmed: 21700838
doi: 10.1126/science.1201512
pmcid: 21700838
Soniat, M. & Rick, S. W. Charge transfer effects of ions at the liquid water/vapor interface. J. Chem. Phys. 140, 184703 (2014).
pubmed: 24832295
doi: 10.1063/1.4874256
pmcid: 24832295
Soniat, M., Kumar, R. & Rick, S. W. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water. J. Chem. Phys. 143, 044702 (2015).
pubmed: 26233152
doi: 10.1063/1.4926831
pmcid: 26233152
Abraham, M. J. et al. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: Tip4p/2005. J. Chem. Phys. 123, 234505 (2005).
pubmed: 16392929
doi: 10.1063/1.2121687
pmcid: 16392929
Siu, S. W. I., Pluhackova, K. & Böckmann, R. A. Optimization of the opls-aa force field for long hydrocarbons. J. Chem. Theory Comput. 8, 1459–1470 (2012).
pubmed: 26596756
doi: 10.1021/ct200908r
pmcid: 26596756
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
doi: 10.1063/1.328693
Alejandre, J. & Chapela, G. A. The surface tension of tip4p/2005 water model using the ewald sums for the dispersion interactions. J. Chem. Phys. 132, 014701 (2010).
pubmed: 20078174
doi: 10.1063/1.3279128
pmcid: 20078174
Skylaris, C.-K., Haynes, P. D., Mostofi, A. A. & Payne, M. C. Introducing onetep: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122, 084119 (2005).
doi: 10.1063/1.1839852
Bowler, D. R. & Miyazaki, T. O(n) methods in electronic structure calculations. Rep. Prog. Phys. 75, 036503 (2012).
pubmed: 22790422
doi: 10.1088/0034-4885/75/3/036503
pmcid: 22790422
Prodan, E. & Kohn, W. Nearsightedness of electronic matter. PNAS 102, 11635–11638 (2005).
pubmed: 16087868
doi: 10.1073/pnas.0505436102
pmcid: 16087868
Cloizeaux, J. D. Energy bands and projection operators in a crystal: analytic and asymptotic properties. Phys. Rev. 135, A685–A697 (1964).
doi: 10.1103/PhysRev.135.A685
Ismail-Beigi, S. & Arias, T. A. Locality of the density matrix in metals, semiconductors, and insulators. Phys. Rev. Lett. 82, 2127–2130 (1999).
doi: 10.1103/PhysRevLett.82.2127
McWeeny, R. Some recent advances in density matrix theory. Rev. Mod. Phys. 32, 335–369 (1960).
doi: 10.1103/RevModPhys.32.335
Hernandez, E. & Gillan, M. J. Self-consistent first-principles technique with linear scaling. Phys. Rev. B 51, 10157–10160 (1995).
doi: 10.1103/PhysRevB.51.10157
Skylaris, C.-K., Mostofi, A. A., Haynes, P. D., Diéguez, O. & Payne, M. C. Nonorthogonal generalized wannier function pseudopotential plane-wave method. Phys. Rev. B 66, 035119 (2002).
doi: 10.1103/PhysRevB.66.035119
He, L. & Vanderbilt, D. Exponential decay properties of wannier functions and related quantities. Phys. Rev. Lett. 86, 5341–5344 (2001).
pubmed: 11384493
doi: 10.1103/PhysRevLett.86.5341
pmcid: 11384493
VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).
doi: 10.1016/j.cpc.2004.12.014
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).
doi: 10.1103/PhysRevA.38.3098
Lee, C., Yang, W. & Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
doi: 10.1103/PhysRevB.37.785
Grimme, S. Semiempirical gga-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
pubmed: 16955487
doi: 10.1002/jcc.20495
pmcid: 16955487
Kleinman, L. & Bylander, D. M. Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425–1428 (1982).
doi: 10.1103/PhysRevLett.48.1425
Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).
doi: 10.1103/PhysRevB.41.1227
Manz, T. A. & Sholl, D. S. Improved atoms-in-molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials. J. Chem. Theory Comput. 8, 2844–2867 (2012).
pubmed: 26592125
doi: 10.1021/ct3002199
pmcid: 26592125
Lee, L. P. et al. Expanding the scope of density derived electrostatic and chemical charge partitioning to thousands of atoms. J. Chem. Theory. Comput. 10, 5377–5390 (2014).
pubmed: 26583221
doi: 10.1021/ct500766v
pmcid: 26583221
Vydrov, O. A. & Van Voorhis, T. Nonlocal van der waals density functional: the simpler the better. J. Chem. Phys. 133, 244103 (2010).
pubmed: 21197972
doi: 10.1063/1.3521275
pmcid: 21197972
Becke, A. D. Density-functional thermochemistry. iii. the role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
doi: 10.1063/1.464913
Møller, C. & Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934).
doi: 10.1103/PhysRev.46.618
Schran, C., Marsalek, O. & Markland, T. E. Unravelling the influence of quantum proton delocalization on electronic charge transfer through the hydrogen bond. Chem. Phys. Lett. 678, 289–295 (2017).
doi: 10.1016/j.cplett.2017.04.034