Comparative genomics applied to Mucor species with different lifestyles.


Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
10 Feb 2020
Historique:
received: 13 05 2019
accepted: 31 10 2019
entrez: 11 2 2020
pubmed: 11 2 2020
medline: 23 10 2020
Statut: epublish

Résumé

Despite a growing number of investigations on early diverging fungi, the corresponding lineages have not been as extensively characterized as Ascomycota or Basidiomycota ones. The Mucor genus, pertaining to one of these lineages is not an exception. To this date, a restricted number of Mucor annotated genomes is publicly available and mainly correspond to the reference species, Mucor circinelloides, and to medically relevant species. However, the Mucor genus is composed of a large number of ubiquitous species as well as few species that have been reported to specifically occur in certain habitats. The present study aimed to expand the range of Mucor genomes available and identify potential genomic imprints of adaptation to different environments and lifestyles in the Mucor genus. In this study, we report four newly sequenced genomes of Mucor isolates collected from non-clinical environments pertaining to species with contrasted lifestyles, namely Mucor fuscus and Mucor lanceolatus, two species used in cheese production (during ripening), Mucor racemosus, a recurrent cheese spoiler sometimes described as an opportunistic animal and human pathogen, and Mucor endophyticus, a plant endophyte. Comparison of these new genomes with those previously available for six Mucor and two Rhizopus (formerly identified as M. racemosus) isolates allowed global structural and functional description such as their TE content, core and species-specific genes and specialized genes. We proposed gene candidates involved in iron metabolism; some of these genes being known to be involved in pathogenicity; and described patterns such as a reduced number of CAZymes in the species used for cheese ripening as well as in the endophytic isolate that might be related to adaptation to different environments and lifestyles within the Mucor genus. This study extended the descriptive data set for Mucor genomes, pointed out the complexity of obtaining a robust phylogeny even with multiple genes families and allowed identifying contrasting potentially lifestyle-associated gene repertoires. The obtained data will allow investigating further the link between genetic and its biological data, especially in terms of adaptation to a given habitat.

Sections du résumé

BACKGROUND BACKGROUND
Despite a growing number of investigations on early diverging fungi, the corresponding lineages have not been as extensively characterized as Ascomycota or Basidiomycota ones. The Mucor genus, pertaining to one of these lineages is not an exception. To this date, a restricted number of Mucor annotated genomes is publicly available and mainly correspond to the reference species, Mucor circinelloides, and to medically relevant species. However, the Mucor genus is composed of a large number of ubiquitous species as well as few species that have been reported to specifically occur in certain habitats. The present study aimed to expand the range of Mucor genomes available and identify potential genomic imprints of adaptation to different environments and lifestyles in the Mucor genus.
RESULTS RESULTS
In this study, we report four newly sequenced genomes of Mucor isolates collected from non-clinical environments pertaining to species with contrasted lifestyles, namely Mucor fuscus and Mucor lanceolatus, two species used in cheese production (during ripening), Mucor racemosus, a recurrent cheese spoiler sometimes described as an opportunistic animal and human pathogen, and Mucor endophyticus, a plant endophyte. Comparison of these new genomes with those previously available for six Mucor and two Rhizopus (formerly identified as M. racemosus) isolates allowed global structural and functional description such as their TE content, core and species-specific genes and specialized genes. We proposed gene candidates involved in iron metabolism; some of these genes being known to be involved in pathogenicity; and described patterns such as a reduced number of CAZymes in the species used for cheese ripening as well as in the endophytic isolate that might be related to adaptation to different environments and lifestyles within the Mucor genus.
CONCLUSIONS CONCLUSIONS
This study extended the descriptive data set for Mucor genomes, pointed out the complexity of obtaining a robust phylogeny even with multiple genes families and allowed identifying contrasting potentially lifestyle-associated gene repertoires. The obtained data will allow investigating further the link between genetic and its biological data, especially in terms of adaptation to a given habitat.

Identifiants

pubmed: 32039703
doi: 10.1186/s12864-019-6256-2
pii: 10.1186/s12864-019-6256-2
pmc: PMC7011435
doi:

Substances chimiques

Fungal Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

135

Références

Evolution. 2016 Sep;70(9):2099-109
pubmed: 27470007
Sci Rep. 2017 Nov 21;7(1):15898
pubmed: 29162893
Mycoses. 2016 Oct;59(10):628-35
pubmed: 27292160
Nature. 2013 Jun 20;498(7454):367-70
pubmed: 23698366
PLoS One. 2011 Jan 31;6(1):e16526
pubmed: 21304975
PLoS Pathog. 2015 May 14;11(5):e1004842
pubmed: 25974051
Sci Rep. 2018 May 16;8(1):7660
pubmed: 29769603
Fungal Genet Biol. 2010 Sep;47(9):736-41
pubmed: 20554054
Fungal Genet Biol. 2019 Aug;129:40-51
pubmed: 31014992
Trends Genet. 2011 Jan;27(1):14-22
pubmed: 21112661
Sci Rep. 2018 Apr 20;8(1):6321
pubmed: 29679020
Bioinformatics. 2003 Jan 22;19(2):301-2
pubmed: 12538260
Nat Biotechnol. 2010 May;28(5):511-5
pubmed: 20436464
Methods Mol Biol. 2014;1079:155-70
pubmed: 24170401
Clin Infect Dis. 2012 Feb;54 Suppl 1:S16-22
pubmed: 22247441
Gigascience. 2012 Dec 27;1(1):18
pubmed: 23587118
Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7
pubmed: 25392425
PLoS Genet. 2016 Jun 13;12(6):e1006108
pubmed: 27294409
Med Mycol J. 2014;55(2):E43-8
pubmed: 24943207
PLoS One. 2014 May 02;9(5):e91929
pubmed: 24786468
Nat Biotechnol. 2011 May 15;29(7):644-52
pubmed: 21572440
Virulence. 2018 Dec 31;9(1):707-720
pubmed: 29436903
Fungal Biol. 2016 Jan;120(1):26-42
pubmed: 26693682
Nat Commun. 2014;5:2876
pubmed: 24407037
Microbiol Rev. 1991 Jun;55(2):234-58
pubmed: 1886520
Med Mycol. 2011 Jan;49(1):62-72
pubmed: 20662633
BMC Bioinformatics. 2005 Feb 15;6:31
pubmed: 15713233
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
Microbiol Res. 2018 Jul - Aug;212-213:103-111
pubmed: 29103733
mBio. 2014 Jul 08;5(4):e01390-14
pubmed: 25006230
Persoonia. 2013 Jun;30:11-47
pubmed: 24027345
Nat Prod Rep. 2018 Oct 17;35(10):1046-1069
pubmed: 30137093
Nat Methods. 2011 Sep 29;8(10):785-6
pubmed: 21959131
Microb Cell Fact. 2016 Jun 07;15:99
pubmed: 27266994
Fungal Biol. 2012 Jun;116(6):692-705
pubmed: 22658314
Metallomics. 2017 Mar 22;9(3):215-227
pubmed: 28217776
PLoS Comput Biol. 2019 Feb 6;15(2):e1006790
pubmed: 30726205
PLoS Pathog. 2017 Jan 20;13(1):e1006150
pubmed: 28107502
Gene. 2018 Sep 5;670:87-97
pubmed: 29800733
Microbiol Spectr. 2017 Sep;5(5):
pubmed: 28917057
Curr Biol. 2016 Jun 20;26(12):1577-1584
pubmed: 27238284
Syst Biol. 2013 Jul;62(4):611-5
pubmed: 23564032
Int J Food Microbiol. 2016 Nov 21;237:17-27
pubmed: 27541978
Genome Res. 2008 May;18(5):821-9
pubmed: 18349386
BMC Bioinformatics. 2017 Apr 12;18(1):214
pubmed: 28403817
Nat Commun. 2016 Jul 22;7:12218
pubmed: 27447865
Curr Genet. 2018 Aug;64(4):853-869
pubmed: 29264641
Microb Cell Fact. 2019 Apr 3;18(1):64
pubmed: 30943965
Int J Biochem Cell Biol. 2017 Aug;89:136-146
pubmed: 28610916
J Infect Dis. 2004 Jun 1;189(11):1965-73
pubmed: 15143461
Q Rev Biophys. 2010 Aug;43(3):373-422
pubmed: 20731893
Front Microbiol. 2012 Feb 06;3:28
pubmed: 22347220
Nucleic Acids Res. 2014 Jan;42(Database issue):D699-704
pubmed: 24297253
mBio. 2019 Feb 5;10(1):
pubmed: 30723131
PLoS Comput Biol. 2011 Oct;7(10):e1002195
pubmed: 22039361
BMC Bioinformatics. 2006 Feb 09;7:62
pubmed: 16469098
Bioinformatics. 2005 May 1;21(9):1859-75
pubmed: 15728110
Nat Rev Microbiol. 2018 Dec;16(12):731-744
pubmed: 30194403
Genome Res. 2008 Dec;18(12):1979-90
pubmed: 18757608
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Curr Protoc Bioinformatics. 2015 Sep 03;51:11.14.1-11.14.19
pubmed: 26334920
BMC Genomics. 2014 Apr 21;15:294
pubmed: 24746234
J Mol Biol. 2001 Jan 19;305(3):567-80
pubmed: 11152613
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
Biotechnol Adv. 2013 Jul-Aug;31(4):466-81
pubmed: 23376652
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Nat Genet. 2015 Apr;47(4):410-5
pubmed: 25706625
PLoS Genet. 2009 Jul;5(7):e1000549
pubmed: 19578406
Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85
pubmed: 26673716
Sci Rep. 2018 Aug 24;8(1):12802
pubmed: 30143654
Nucleic Acids Res. 2003 Nov 15;31(22):6633-9
pubmed: 14602924
Brief Funct Genomics. 2014 Nov;13(6):482-92
pubmed: 25062661
Emerg Microbes Infect. 2017 Jul 12;6(7):e63
pubmed: 28698667
Food Microbiol. 2016 Jun;56:69-79
pubmed: 26919819
BMC Genomics. 2013 Apr 23;14:274
pubmed: 23617724
Nucleic Acids Res. 2016 Jul 8;44(W1):W54-7
pubmed: 27174935
Genome Biol. 2008 Jan 11;9(1):R7
pubmed: 18190707
Clin Infect Dis. 2012 Feb;54 Suppl 1:S23-34
pubmed: 22247442
Mol Biol Evol. 2013 Aug;30(8):1987-97
pubmed: 23709260
Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41
pubmed: 28460038
Front Cell Infect Microbiol. 2017 Apr 04;7:107
pubmed: 28421167
Front Cell Infect Microbiol. 2018 May 29;8:180
pubmed: 29896454
Nucleic Acids Res. 2016 Jan 4;44(D1):D343-50
pubmed: 26527717
G3 (Bethesda). 2018 May 31;8(6):2007-2018
pubmed: 29674435
FEMS Microbiol Lett. 1992 Jul 1;73(1-2):37-41
pubmed: 1387861
Bioorg Chem. 2001 Oct;29(5):293-307
pubmed: 16256699
Nat Rev Microbiol. 2008 Aug;6(8):572-3
pubmed: 18628767
Nat Rev Genet. 2007 Dec;8(12):973-82
pubmed: 17984973
Genome Biol. 2015 Aug 06;16:157
pubmed: 26243257
Mol Biol Evol. 2018 Mar 1;35(3):543-548
pubmed: 29220515
Science. 1944 Dec 29;100(2609):579-83
pubmed: 17776122
Fungal Genet Biol. 2011 Jul;48(7):696-703
pubmed: 21443966
Bioinformatics. 2013 Nov 15;29(22):2933-5
pubmed: 24008419
PLoS One. 2010 Nov 24;5(11):e15489
pubmed: 21124797
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
PLoS One. 2015 Jun 05;10(6):e0128396
pubmed: 26046932
Nucleic Acids Res. 2007;35(9):3100-8
pubmed: 17452365
Bioinformatics. 2005 Feb 1;21(3):390-2
pubmed: 15374874
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101
pubmed: 29771380
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
pubmed: 24270786

Auteurs

Annie Lebreton (A)

Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.

Erwan Corre (E)

Station Biologique de Roscoff, Plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), Paris VI, Place Georges Teissier, 74 29682, Roscoff Cedex, BP, France.

Jean-Luc Jany (JL)

Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.

Loraine Brillet-Guéguen (L)

Station Biologique de Roscoff, Plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), Paris VI, Place Georges Teissier, 74 29682, Roscoff Cedex, BP, France.
CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, 29680, Roscoff, France.

Carlos Pèrez-Arques (C)

Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.

Victoriano Garre (V)

Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.

Misharl Monsoor (M)

Station Biologique de Roscoff, Plateforme ABiMS, CNRS: FR2424, Sorbonne Université (UPMC), Paris VI, Place Georges Teissier, 74 29682, Roscoff Cedex, BP, France.

Robert Debuchy (R)

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, CEDEX 91198, Gif-sur-Yvette, France.

Christophe Le Meur (C)

Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.

Emmanuel Coton (E)

Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.

Georges Barbier (G)

Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.

Laurence Meslet-Cladière (L)

Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France. laurence.meslet@univ-brest.fr.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH