Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 02 2020
Historique:
received: 29 01 2019
accepted: 14 01 2020
entrez: 9 2 2020
pubmed: 9 2 2020
medline: 13 11 2020
Statut: epublish

Résumé

This study provides insights in patterns of distribution of abiotic and biotic stress resilience across Vigna gene pools to enhance the use and conservation of these genetic resources for legume breeding. Vigna is a pantropical genus with more than 88 taxa including important crops such as V. radiata (mung bean) and V. unguiculata (cowpea). Our results show that sources of pest and disease resistance occur in at least 75 percent of the Vigna taxa, which were part of screening assessments, while sources of abiotic stress resilience occur in less than 30 percent of screened taxa. This difference in levels of resilience suggests that Vigna taxa co-evolve with pests and diseases while taxa are more conservative to adapt to climatic changes and salinization. Twenty-two Vigna taxa are poorly conserved in genebanks or not at all. This germplasm is not available for legume breeding and requires urgent germplasm collecting before these taxa extirpate on farm and in the wild. Vigna taxa, which tolerate heat and drought stress are rare compared with taxa, which escape these stresses because of short growing seasons or with taxa, which tolerate salinity. We recommend prioritizing these rare Vigna taxa for conservation and screening for combined abiotic and biotic stress resilience resulting from stacked or multifunctional traits. The high presence of salinity tolerance compared with drought stress tolerance, suggests that Vigna taxa are good at developing salt-tolerant traits. Vigna taxa are therefore of high value for legume production in areas that will suffer from salinization under global climate change.

Identifiants

pubmed: 32034221
doi: 10.1038/s41598-020-58646-8
pii: 10.1038/s41598-020-58646-8
pmc: PMC7005857
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2111

Références

Foyer, C. H. et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2, 16112 (2016).
doi: 10.1038/nplants.2016.112
Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R. & Kanyama-Phiri, G. Y. Biodiversity can support a greener revolution in. Africa. Proc. Natl. Acad. Sci 107, 20840–20845 (2010).
Scheelbeek, P. F. D. et al. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl. Acad. Sci. USA 115, 6804–6809 (2018).
doi: 10.1073/pnas.1800442115
Dwivedi, S. L. et al. Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21, 31–42 (2016).
doi: 10.1016/j.tplants.2015.10.012
Sharma, S., Upadhyaya, H. D., Varshney, R. K. & Gowda, C. L. L. Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front. Plant Sci. 4 (2013).
Prohens, J. et al. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213, 158 (2017).
doi: 10.1007/s10681-017-1938-9
Farooq, M. et al. Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Sci 68, 985–1005 (2017).
doi: 10.1071/CP17012
Boukar, O. et al. Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breed. 138, 415–424 (2018).
Shanmugasundaram, S., Keatinge, J. & Hughes, J. The mungbean transformation: Diversifying crops, defeating malnutrition. International Food Policy Research Institute 00922 (2009).
Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61, 199–223 (2007).
doi: 10.1016/j.envexpbot.2007.05.011
Iseki, K., Takahashi, Y., Muto, C., Naito, K. & Tomooka, N. Diversity of drought tolerance in the genus Vigna. Front. Plant Sci. 9, 729 (2018).
doi: 10.3389/fpls.2018.00729
Cane, S. Australian Aboriginal subsistence in the Western desert. Hum. Ecol. 15, 391–434 (1987).
doi: 10.1007/BF00887998
Priya, M. et al. GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. Sci. Rep. 9 (2019).
Harsh, A. et al. Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Ann. Agric. Sci. 61, 57–64 (2016).
doi: 10.1016/j.aoas.2016.02.001
Hanumantharao, B., Nair, R. M. & Nayyar, H. Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front. Plant Sci. 7 (2016).
Iseki, K., Takahashi, Y., Muto, C., Naito, K. & Tomooka, N. Diversity and evolution of salt tolerance in the genus Vigna. PLoS One 11, e0164711 (2016).
doi: 10.1371/journal.pone.0164711
Nair, R. M. et al. Biotic and abiotic constraints in mungbean production—Progress in genetic improvement. Front. Plant Sci. 10 (2019).
War, A. R., Murugesan, S., Boddepalli, V. N., Srinivasan, R. & Nair, R. M. Mechanism of Resistance in Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). Front. Plant Sci. 8, 1031 (2017).
doi: 10.3389/fpls.2017.01031
Rakha, M., Hanson, P. & Ramasamy, S. Identification of resistance to Bemisia tabaci Genn. in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Genet. Resour. Crop Evol. 64, 247–260 (2017).
doi: 10.1007/s10722-015-0347-y
Khoury, C. K. et al. Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits (Cucurbita L.). Plants, People, Planet 1–15, doi:10.1002/ppp3.10085 (2019).
Khoury, C. K. et al. Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol. Conserv. 184, 259–270 (2015).
doi: 10.1016/j.biocon.2015.01.032
USDA, ARS & NPGS. GRIN-Taxonomy. (2018). Available at: https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx . (Accessed: 10th December 2018)
FAO. WIEWS - World information and early warning system on plant genetic resources for food and agriculture. http://www.fao.org/wiews/en/ (2018).
Trust, C. Genesys - the global gateway to genetic resources. https://www.genesys-org (2018).
Tomooka, N., Vaughan, D. A., Moss, H. & Maxted, N. The Asian Vigna: Genus Vigna subgenus Ceratotropis genetic resources. (Springer Netherlands, 2002).
Chamberlain, S., Ram, K., Barve, V. & Mcglinn, D. rgbif: Interface to the Global Biodiversity Information Facility. R package version 0.4. 0. (2016).
van Zonneveld, M. et al. Tree genetic resources at risk in South America: A spatial threat assessment to prioritize populations for conservation. Divers. Distrib. 24, 718–729 (2018).
doi: 10.1111/ddi.12724
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
doi: 10.1111/j.1472-4642.2010.00725.x
Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
doi: 10.1111/jbi.12058
Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS One 9, e97122 (2014).
doi: 10.1371/journal.pone.0097122
Wickham, H. ggplot2: elegant graphics for data analysis. (Springer New York, 2009).
Tapiquén, C. E. P. World Countries. (2015). Available at, http://tapiquen-sig.jimdo.com . (Accessed: 11th December 2018).
Weinberger, K. Impact analysis of mungbean research in South and Southeast Asia. Final report of GTZ Project. (2003).
Kaga, A., Isemura, T., Tomooka, N. & Vaughan, D. A. The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178, 1013–1036 (2008).
doi: 10.1534/genetics.107.078451
Tomooka, N., Pandiyan, M., Senthil, N., Ramamoorthi, N. & Kaga, A. Collection and conservation of crops and their wild relatives in Tamil Nadu, India. Annual Report on exploration and introduction of plant genetic resources. (2009).
Aitawade, M. M. et al. Section Ceratotropis of subgenus Ceratotropis of Vigna (Leguminosae - Papilionoideae) in India with a new species from northern Western Ghats. Rheedea 22, 20–27 (2012).
Tomooka, N., Kaga, A., Isemura, T. & Vaughan, D. Vigna. in Wild Crop Relatives: Genomic and Breeding Resources: Legume Crops and Forages 291–311 (Springer Berlin Heidelberg, 2011).
Garba, M. & Pasquet, R. S. The Vigna vexillata (L.) A. Rich. gene pool. in Proceedings of the 2nd International Symposium on Tuberous Legumes (eds. Soerensen M., Estrella, E., Hamann, O. & Rios, R.) 61–71 (Copenhague MacKensie, 1998).
Somta, P., Chankaew, S., Rungnoi, O. & Srinives, P. Genetic diversity of the Bambara groundnut (Vigna subterranea (L.) Verdc.) as assessed by SSR markers. Genome 54, 898–910 (2011).
doi: 10.1139/g11-056
Tomooka, N. et al. Evolution, domestication and neo-domestication of the genus Vigna. Plant Genet. Resour. C. 12, S168–S171 (2014).
doi: 10.1017/S1479262114000483
Maxted, N. et al. An ecogeographic study: African Vigna. (IPGRI, 2004).
Hare, J. D. How insect herbivores drive the evolution of plants. Science 338, 50–51 (2012).
doi: 10.1126/science.1228893
Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L. & Salminen, J.-P. Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338, 113–116 (2012).
doi: 10.1126/science.1225977
Züst, T. et al. Natural enemies drive geographic variation in plant defenses. Science 338, 116–119 (2012).
doi: 10.1126/science.1226397
Shapiro, J. A., Steffens, J. C. & Mutschler, M. A. Acylsugars of the wild tomato Lycopersicon pennellii in relation to geographic distribution of the species. Biochem. Syst. Ecol. 22, 545–561 (1994).
doi: 10.1016/0305-1978(94)90067-1
Lucatti, A. F., van Heusden, A. W., de Vos, R. C., Visser, R. G. & Vosman, B. Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evol. Biol. 13, 175 (2013).
doi: 10.1186/1471-2148-13-175
Singh, K. B., Ocampo, B. & Robertson, L. D. Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet. Resour. Crop Evol 45, 9–17 (1998).
doi: 10.1023/A:1008620002136
Kissoudis, C., van de Wiel, C., Visser, R. G. F. & van der Linden, G. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant Sci. 5, 207 (2014).
doi: 10.3389/fpls.2014.00207
Gould, S. J. & Vrba, E. S. Exaptation—a missing term in the science of form. Paleobiology 1, 4–15 (1982).
doi: 10.1017/S0094837300004310
Harada, E. et al. Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol. 51, 1627–1637 (2010).
doi: 10.1093/pcp/pcq118
Oghiakhe, S., Jackai, L. E. N., Makanjuola, W. A. & Hodgson, C. J. Morphology, distribution, and the role of trichomes in cowpea (Vigna unguiculata) resistance to the legume pod borer, Maruca testulalis (Lepidoptera: Pyralidae). Bull. Entomol. Res. 82, 499 (1992).
doi: 10.1017/S0007485300042577
BBleeker, P. M. et al. Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc. Natl. Acad. Sci. USA 109, 20124–20129 (2012).
doi: 10.1073/pnas.1208756109
Dalin, P., Ågren, J., Björkman, C., Huttunen, P., & Kärkkäinen, K. Leaf trichome formation and plant resistance to herbivory. Induced plant resistance to herbivory (Springer Netherlands, 2008).
IUCN. The IUCN Red List of threatened species. Version 2018-1. Available at: www.iucnredlist.org . (Accessed: 25th September 2018). (2018).
NatureServe. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. Available at: http://explorer.natureserve.or . (Accessed: 25th September 2018). (2018).

Auteurs

Maarten van Zonneveld (M)

World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan. maarten.vanzonneveld@worldveg.org.

Mohamed Rakha (M)

World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan.
Horticulture Department, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, 33516, Egypt.

Shin Yee Tan (SY)

World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan.
Univeristi Malaysia Sabah, Batu 10, 90000, Sandakan, Sabah, Malaysia.

Yu-Yu Chou (YY)

World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan.

Ching-Huan Chang (CH)

World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan.

Jo-Yi Yen (JY)

World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan.

Roland Schafleitner (R)

World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan.

Ramakrishnan Nair (R)

World Vegetable Center, South Asia, ICRISAT Campus, Patancheru, 502324, Hyderabad, Telangana, India.

Ken Naito (K)

Genetic Resources Center, National Agriculture and Food Science Organization, Tsukuba, Ibaraki, Japan.

Svein Ø Solberg (SØ)

World Vegetable Center, Headquarters, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan.
Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, P.O. Box 400, 2418, Elverum, Norway.

Articles similaires

Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Ethiopia Conservation of Natural Resources Environmental Monitoring Soil Soil Erosion

Classifications MeSH