Twisted paddlewheel rhodium complexes: Contribution of central and axial chirality to ECD, VCD, and NMR spectra.
ECD
NMR
VCD
absolute configuration
circular dichroism
dirhodium
Journal
Chirality
ISSN: 1520-636X
Titre abrégé: Chirality
Pays: United States
ID NLM: 8914261
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
01
10
2019
revised:
03
01
2020
accepted:
17
01
2020
pubmed:
8
2
2020
medline:
8
2
2020
entrez:
8
2
2020
Statut:
ppublish
Résumé
Dirhodium complexes bearing N-substituted chiral amino acid ligands are investigated. These complexes have an unusual twisted paddlewheel structure, showing inherent chirality. We would like to demonstrate that parallel application of chiroptical spectroscopic methods (ECD and VCD) and NMR spectroscopy combined with quantum chemical calculations constitutes a powerful tool to determine the configuration of the complexes unequivocally. Two chiroptical methods are needed to determine the absolute configuration: ECD for the coordinated nitrogen atom and VCD for the rhodium core. A quick to use NMR method is also presented: Upon the coordination of small molecules in the axial position, the relative configuration of both the rhodium core and the nitrogen atom can be determined simultaneously by studying spatial proximities provided by 1D NOE spectra.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
446-456Subventions
Organisme : National Research, Development and Innovation Office, Hungary
ID : NKFIH K115939
Pays : International
Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
von Zelewsky A, Knof U. Predetermined chirality at metal centers. Angew Chem Int Ed. 1999;38:302-322.
Liao K, Negretti S, Musaev DG, Bacsa J, Davies HML. Site-selective and stereoselective functionalization of unactivated C-H bonds. Nature. 2016;533(7602):230-234.
Davies HML, Morton D. Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes. Chem Soc Rev. 2011;40:1857-1869.
Bernales V, Yang D, Yu J, et al. Molecular rhodium complexes supported on the metal-oxide-like nodes of metal organic frameworks and on zeolite HY: Catalysts for ethylene hydrogenation and dimerization. ACS Appl Mater Interfaces. 2017;9:33511-335209.
Ball ZT. Molecular recognition in protein modification with rhodium metallopeptide. Curr Opin Chem Biol. 2015;25:98-102.
Sanada K, Ube H, Shionoya M. Rotational control of a dirhodium-centered supramolecular four-gear system by ligand exchange. J Am Chem Soc. 2016;138(9):2945-2948.
Chifotides HT, Dunbar KR. Interactions of metal−metal-bonded antitumor active complexes with DNA fragments and DNA. Acc Chem Res. 2005;38:146-156.
Majer ZS, Bősze SZ, Szabó I, et al. Study of dinuclear Rh (II) complexes of phenylalanine derivatives as potential anticancer agents by using X-ray fluorescence and X-ray absorption. Microchem J. 2015;120:51-57.
Paulissenen R, Reimlinger H, Hayez E, Hubert AJ, Teyssie P. Transition metal catalysed reactions of diazocompounds-II insertion in the hydroxylic bond. Tetrahedron Lett. 1973;14:2233-2236.
Demonceau A, Noels AF, Hubert AJ, Teyssié P. Transition-metal-catalysed reactions of diazoesters. Insertion into C-H bonds of paraffins by carbenoids. J Chem Soc Chem Commun. 1981;(14):688-689.
Briones JF, Davies HML. Rh2(S-PTAD)4-catalyzed asymmetric cyclopropenation of aryl alkynes. Tetrahedron. 2011;67:4313-4317.
Verdecchia M, Tubaro C, Biffis A. Olefin cyclopropanation with aryl diazocompounds upon catalysis by a dirhodium(II) complex. Tetrahedron Lett. 2011;52:1136-1139.
Bois JD. Rhodium-Catalyzed C-H Amination - An Enabling Method for Chemical Synthesis. Org Process Res Dev. 2011;15(4):758-762.
Lindsay VNG, Charette AB. Design and synthesis of chiral heteroleptic rhodium (II) Carboxylate Catalysts: experimental investigation of halogen bond rigidification effects in asymmetric cyclopropanation. ACS Catal. 2012;2:1221-1225.
Dennis AM, Howard RA, Bear JL, Korp JD, Bernal I. Synthesis and structure of diaquo-tetra-μ-β-alaninatoniumdirhodium(II) tetraperchlorate dihydrate. Inorg Chim Acta. 1979;37:L561-L563.
Korp JD, Bernal I, Bear JL. The crystal and molecular structures of diaquo-tetra-μ-(β-alaninatonium)dirhodium (II) tetraperchlorate tetrahydrate. Inorg Chim Acta. 1981;51:1-7.
Bontcev PR, Miteva M, Zhecheva E, Mechandjiev D, Pneumatikakis G, Angelopoulos C. Synthesis and structure of the complex tetra-μ-prolinatodirhodium (II). Inorg Chim Acta. 1988;152:107-110.
Koralewicz M, Pruchnik FP, Szymaszek A, Wadja-Hermanowicz K, Wrona-Grzegorek K. Binuclear rhodium (II) complexes with leucine and proline. Transition Met Chem. 1998;23:523-525.
Frade RFM, Candeias NR, Duarte CM, et al. New dirhodium complex with activity towards colorectal cancer. Bioorg Med Chem Lett. 2010;20(11):3413-3415.
Candeias NR, Carias C, Gomes LFR, et al. Asymmetric intramolecular C-H insertion of α-diazoacetamides in Water by Dirhodium (II) Catalysts Derived from Natural Amino Acids. Adv Synth Catal. 2012;354:2921-2927.
Majer ZS, Szilvágyi G, Benedek L, Csámpai A, Hollósi M, Vass E. Chelate structure of a dirhodium-amino acid complex identified by chiroptical and NMR spectroscopy. J Eur Inorg Chem. 2013;2013(17):3020-3027.
Szilvágyi G, Brém B, Tölgyesi L, Hollósi M, Vass E. Dirhodium complexes: determination of absolute configuration by the exciton chirality method using VCD spectroscopy. Dalton Trans. 2013;42(36):13137-13144.
Jawiczuk M, Górecki M, Suszczyńska A, Karchier M, Jaźwiński J, Frelek J. Dimolybdenum tetracarboxylates as auxiliary chromophores in chiroptical studies of vic-Diols. Inorg Chem. 2013;52(14):8250-8263.
You L, Pescitelli G, Anslyn EV, Bari LD. An exciton-coupled circular dichroism protocol for the determination of identity, chirality, and enantiomeric excess of chiral secondary alcohols. J Am Chem Soc. 2012;134(16):7117-7125.
Coughlin FJ, Westrol MS, Oyler KD, et al. Synthesis, separation, and circularly polarized luminescence studies of enantiomers of iridium (III) luminophores. Inorg Chem. 2008;47(6):2039-2048.
Sato H, Taniguchi T, Monde K, Nishimura SI, Yamagishi A. Dramatic effects of d-electron configurations on vibrational circular dichroism spectra of Tris (acetylacetonato)metal (III). Chem Lett. 2006;35:364-365.
Yamamoto S, Bouř P. Detection of molecular chirality by induced resonance Raman optical activity in europium complexes. Angew Chem Int Ed. 2012;51(44):11058-11061.
Wu T, You XZ, Bouř P. Applications of chiroptical spectroscopy to coordination compounds. Coord Chem Rev. 2015;284:1-18.
Merten C, McDonald R, Xu Y. Strong solvent-dependent preference of Δ and Λ stereoisomers of Tris (diamine)nickel (II) complex revealed by vibrational circular dichroism spectroscopy. Inorg Chem. 2014;53(6):3177-3182.
Sato H, Takimoto K, Mori H, Yamagishi A. Stereoselective interactions as manifested by vibrational circular dichroism spectra: the interplay between chiral metal complexes co-adsorbed in a montmorillonite clay. Phys Chem Chem Phys. 2018;20(39):25421-25427.
Sato H, Yamagishi A. VCD Studies on chiral characters of metal complex oligomers. Int J Mol Sci. 2013;14(1):964-978.
Domingos SR, Huerta-Viga A, Baij L, et al. Amplified vibrational circular dichroism as a probe of local biomolecular structure. J Am Chem Soc. 2014;136:3530-3535.
Taniguchi T, Monde K. Exciton chirality method in vibrational circular dichroism. J Am Chem Soc. 2012;134(8):3695-3698.
Asai T, Taniguchi T, Yamamoto T, Monde K, Oshima Y. Structures of spiroindicumides A and B, unprecedented carbon skeletal spirolactones, and determination of the absolute configuration by vibrational circular dichroism exciton approach. Org Lett. 2013;15(17):4320-4323.
Komori K, Taniguchi T, Mizutani S, Monde K, Kuramochi K, Tsubaki K. Short synthesis of berkeleyamide D and determination of the absolute configuration by the vibrational circular dichroism exciton chirality method. Org Lett. 2014;16(5):1386-1389.
Abbate S, Mazzeo G, Meneghini S, Longhi G, Boiadjiev SE, Lightner DA. Bicamphor: a prototypic molecular system to investigate vibrational excitons. J Phys Chem A. 2015;119(18):4261-4267.
Mazzeo G, Abbate S, Longhi G, Castiglioni E, Boiadjiev SE, Lightner DA. pH dependent chiroptical properties of (1R,2R)- and (1S,2S)-trans-cyclohexane diesters and diamides from VCD, ECD, and CPL spectroscopy. J Phys Chem B. 2016;120(9):2380-2387.
Abbate S, Bruhn T, Pescitelli G, Longhi G. Vibrational optical activity of BODIPY dimers: the role of magnetic−electric coupling in vibrational excitons. J Phys Chem A. 2017;121(1):394-400.
Szymkowiak J, Kwit M. Electronic and vibrational exciton coupling in oxidized trianglimines. Chirality. 2017;30:117-130.
Sánchez-Castellanos M, Bucio MA, Hernández-Berragán A, Joseph-Nathan P, Cuevas G, Quijano L. Vibrational circular dichroism (VCD), VCD exciton coupling, and X-ray determination of the absolute configuration of an α,β-unsaturated germacranolide. Chirality. 2015;27(3):247-252.
Covington CL, Nicu VP, Polavarapu PL. Determination of the absolute configurations using exciton chirality method for vibrational circular dichroism: right answers for the wrong reasons? J Phys Chem A. 2015;119(42):10589-10601.
Nicu VP. Revisiting an old concept: the coupled oscillator model for VCD. Part 1: the generalised coupled oscillator mechanism and its intrinsic connection to the strength of VCD signals. Phys Chem Chem Phys. 2016;18(31):21202-21212.
Fusè M, Mazzeo G, Longhi G, et al. VCD spectroscopy as an excellent probe of chiral metal complexes containing a carbon monoxide vibrational chromophore. Chem Commun. 2015;51(45):9385-9387.
Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision B.01. Wallingford CT: Gaussian, Inc; 2010.
Allouche AR. Gabedit-a graphical user interface for computational chemistry softwares. J Comput Chem. 2011;32(1):174-182.
Anderson JC, Cubbon RJ, Harling JD. Investigation of the importance of nitrogen substituents in a N-P chiral ligand for enantioselective allylic alkylation. Tetrahedron: Asymm. 2001;12:923-935.
Ma D, Zhang Y, Yao J, Wu S, Tao F. Accelerating effect induced by the structure of α-amino acid in the copper-catalyzed coupling reaction of aryl halides with α-amino acids. Synthesis of Benzolactam-V8. J Am Chem Soc. 1998;120:12459-12467.
Snatzke G. Circular dichroism and absolute conformation: application of qualitative MO theory to chiroptical phenomena. Angew Chem Int Ed Engl. 1979;18:363-377.
Duddeck H. Rh2[MTPA]4, a dirhodium complex as NMR auxiliary for chiral recognition. Chem Rec. 2005;5:396-409.
Duddeck H, Gómez ED. Chiral recognition of ethers by NMR spectroscopy. Chirality. 2009;21:51-68.
Wypchlo K, Duddeck H. Chiral recognition of olefins by 1H NMR spectroscopy in the presence of a chiral dirhodium complex. Tetrahedron: Asymm. 1994;5:27-30.
Wypchlo K, Duddeck H. Chiral recognition of epoxides by 1H NMR spectroscopy in the presence of a chiral dirhodium complex. Chirality. 1997;9:601-603.
Meyer C, Duddeck H. Chiral discrimination of methyl phenyl sulfoxide using dirhodium complexes. Magn Reson Chem. 2000;38:29-32.
Magiera D, Omelanczuk J, Dziuba K, Pietrusiewicz KM, Duddeck H. Phosphine-Rh2[(R)-MTPA]4 Adducts in solution: characterization by NMR spectroscopy and chiral discrimination. Organometallics. 2003;22:2464-2471.
Malik S, Moeller S, Tóth G, Gáti T, Choudhary MI, Duddeck H. Phenylselenenylalkanes, their adducts with the dirhodium complex Rh2(MTPA)4 and ligand exchange mechanisms in solution as studied by 1H, 13C and 77Se NMR spectroscopy. Magn Reson Chem. 2003;41:455-465.
Jaźwiński J, Sadlej A. Studies on the configuration of nitrogenous stereogenic centres in adducts of rhodium(II) tetraacylates with chiral amines: the application of 1H and 13C NMR spectroscopy. Tetrahedron: Asymm. 2009;20:2331-2343.
Trindade AF, Coelho JAS, Afonso CAM, Veiros LF, Gois PMP. Fine Tuning of Dirhodium (II) Complexes: Exploring the Axial Modification. ACS Catal. 2012;2:370-383.
Hirva P, Esteban J, Lloret J, Lahuerta P, Pérez-Prieto J. Determination of equilibrium constants and computational interaction energies for adducts of [Rh2(RCO2)(4-n)(PC)n] (n = 0-2) with Lewis bases. Inorg Chem. 2007;46(7):2619-2626.