Pharmaceuticals in treated wastewater induce a stress response in tomato plants.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
05 02 2020
Historique:
received: 19 08 2019
accepted: 13 01 2020
entrez: 7 2 2020
pubmed: 7 2 2020
medline: 13 11 2020
Statut: epublish

Résumé

Pharmaceuticals remain in treated wastewater used to irrigate agricultural crops. Their effect on terrestrial plants is practically unknown. Here we tested whether these compounds can be considered as plant stress inducers. Several features characterize the general stress response in plants: production of reactive oxygen species acting as stress-response signals, MAPKs signaling cascade inducing expression of defense genes, heat shock proteins preventing protein denaturation and degradation, and amino acids playing signaling roles and involved in osmoregulation. Tomato seedlings bathing in a cocktail of pharmaceuticals (Carbamazepine, Valporic acid, Phenytoin, Diazepam, Lamotrigine) or in Carbamazepine alone, at different concentrations and during different time-periods, were used to study the patterns of stress-related markers. The accumulation of the stress-related biomarkers in leaf and root tissues pointed to a cumulative stress response, mobilizing the cell protection machinery to avoid metabolic modifications and to restore homeostasis. The described approach is suitable for the investigation of stress response of different crop plants to various contaminants present in treated wastewater.

Identifiants

pubmed: 32024917
doi: 10.1038/s41598-020-58776-z
pii: 10.1038/s41598-020-58776-z
pmc: PMC7002738
doi:

Substances chimiques

Pharmaceutical Preparations 0
Reactive Oxygen Species 0
Waste Water 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1856

Références

Carter, L. J., Chefetz, B., Abdeen, Z. & Boxall, A. B. A. Emerging investigator series: towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. Environ. Sci. Process Impacts. 21, 605–622 (2019).
pubmed: 30932118 doi: 10.1039/C9EM00020H
Wu, X., Conkle, J. L., Ernst, F. & Gan, J. Treated wastewater irrigation: uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environ. Sci. Technol. 48, 11286–11293 (2014).
pubmed: 25211705 doi: 10.1021/es502868k
Christou, A., Karaolia, P., Hapeshi, E., Michael, C. & Fatta-Kassinos, D. Long-term wastewater irrigation of vegetables in real agricultural systems: concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment. Water Res. 109, 24–34 (2017).
pubmed: 27865170 doi: 10.1016/j.watres.2016.11.033
Paltiel, O. et al. Human exposure to wastewater-derived pharmaceuticals in fresh produce: a randomized controlled trial focusing on carbamazepine. Environ. Sci. Technol. 50, 4476–4482 (2016).
pubmed: 27021726 doi: 10.1021/acs.est.5b06256
Malchi, T., Maor, Y., Tadmor, G., Shenker, M. & Chefetz, B. Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ. Sci. Technol. 48, 9325–9333 (2014).
pubmed: 25026038 doi: 10.1021/es5017894
Rasheed, T., Bilal, M., Nabeel, M., Adeel, M. & Iqbal, H. M. N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. International 122, 52–66 (2019).
doi: 10.1016/j.envint.2018.11.038
European Commission. Proposal for a Regulation of the European Parliament and of the Council on minimum requirements for water reuse, https://ec.europa.eu/environment/water/pdf/water_reuse_regulation_impact_assessment.pdf (2018).
Jelic, A. et al. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment. Sci. Total Environ. 433, 352–361 (2012).
pubmed: 22819886 doi: 10.1016/j.scitotenv.2012.06.059
Subedi, B. & Kannan, K. Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, USA. Sci. Total Environ. 1(514), 273–80 (2015).
doi: 10.1016/j.scitotenv.2015.01.098
Miao, X.-S., Yang, J.-J. & Metcalfe, C. D. Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Eviron. Sci. Technol. 39, 7469–7475 (2005).
doi: 10.1021/es050261e
Shao, Y., Yang, K., Jia, R., Tian, C. & Zhu, Y. Degradation of Triclosan and Carbamazepine in two agricultural and garden soils with different textures amended with composted sewage sludge. Int. J. Environ. Res. Public Health. 15, 2557 (2018).
pmcid: 6267568 doi: 10.3390/ijerph15112557 pubmed: 6267568
Bahlmann, A., Brack, W., Schneider, R. J. & Krauss, M. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Res. 57, 104–114 (2014).
pubmed: 24704908 doi: 10.1016/j.watres.2014.03.022
Dai, G. et al. Major pharmaceuticals and personal care products (PPCPs) in wastewater treatment plant and receiving water in Beijing, China, and associated ecological risks. Bull. Environ. Contam. Toxicol. 92, 655–661 (2014).
pubmed: 24619361 doi: 10.1007/s00128-014-1247-0
Ratola, N., Cincinelli, A., Alves, A. & Katsoyiannis, A. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. J. Hazard. Mater. 239, 1–18 (2012).
pubmed: 22771351 doi: 10.1016/j.jhazmat.2012.05.040
Li, J., Dodgen, L., Ye, Q. & Gan, J. Degradation kinetics and metabolites of carbamazepine in soil. Environ. Sci. Technol. 47, 3678–3684 (2013).
pubmed: 23506704 doi: 10.1021/es304944c
Grossberger, A., Hadar, Y., Borch, T. & Chefetz, B. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater. Environ. Pollut. 185, 168–177 (2014).
pubmed: 24286691 doi: 10.1016/j.envpol.2013.10.038
Czajkowski, K. P. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ. Sci. Technol. 44, 6157–6161 (2010).
pubmed: 20704212 doi: 10.1021/es1011115
Dalkmann, L. et al. Uptake of pharmaceuticals, hormones and parabens into vegetables grown in soil fertilized with municipal biosolids. Sci. Total Environ. 431, 233–236 (2012).
doi: 10.1016/j.scitotenv.2012.05.017
Malchi, T., Maor, Y., Tadmor, G., Shenker, M. & Chefetz, B. Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ. Sci. Technol. 48, 9325–9333 (2014).
pubmed: 25026038 doi: 10.1021/es5017894
Riemenschneider, C., Seiwert, B., Moeder, M., Schwarz, D. & Reemtsma, T. Extensive transformation of the pharmaceutical carbamazepine following uptake into intact tomato plants. Environ. Sci. Technol. 51, 6100–6109 (2017).
pubmed: 28506063 doi: 10.1021/acs.est.6b06485
Ben Mordechay, E., Tarchitzky, J., Chen, Y., Shenker, M. & Chefetz, B. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine. Environ. Pollut. 232, 164–172 (2018).
pubmed: 28935405 doi: 10.1016/j.envpol.2017.09.029
Hughes, S. R., Kay, P. & Brown, L. E. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 47, 2661–677 (2013).
doi: 10.1021/es3030148
Bartha, B., Huber, C., Harpaintner, R. & Schröder, P. Effects of acetaminophen in Brassica juncea L. Czern.: investigation of uptake, translocation, detoxification, and the induced defense pathways. Environ. Sci. Pollut. Res. 17, 1553–1562 (2010).
doi: 10.1007/s11356-010-0342-y
Sun, C., Dudley, S., Trumble, J. & Gan, J. Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants. Environ. Pollut. 234, 39–47 (2018).
pubmed: 29156440 doi: 10.1016/j.envpol.2017.11.041
Christou, A., Michael, C., Fatta-Kassinos, D. & Fotopoulos, V. Can the pharmaceutically active compounds released in agroecosystems be considered as emerging plant stressors? Environ. Int. 114, 360–364 (2018).
pubmed: 29555371 doi: 10.1016/j.envint.2018.03.003
Jalmi., S. K. & Sinha, A. K. ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Front. Plant Sci. 6, 769 (2015).
pubmed: 26442079 pmcid: 4585162 doi: 10.3389/fpls.2015.00769
Jacob, P., Hirt, H. & Bendahmane, A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotech. J. 15, 405–414 (2017).
doi: 10.1111/pbi.12659
Seifikalhor, M., Aliniaeifard, S., Hassani, B., Nikham, V. & Lastochkina, O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Re. 38, 847–867 (2019).
doi: 10.1007/s00299-019-02396-z
Park, C. J. & Seo, Y. S. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol. J. 31, 323–333 (2015).
pubmed: 4677741 pmcid: 4677741 doi: 10.5423/PPJ.RW.08.2015.0150
Gorovits, R. & Czosnek, H. The involvement of heat shock proteins in the establishment of Tomato Yellow leaf curl virus infection. Front. Plant Sci. 8, 355–363 (2017).
pubmed: 5352662 pmcid: 5352662 doi: 10.3389/fpls.2017.00355
Bigeard, J. & Hirt, H. Nuclear signaling of plant MAPKs. Frontiers in Plant Science 9, 469 (2018).
pubmed: 29696029 pmcid: 5905223 doi: 10.3389/fpls.2018.00469
Backhaus, T. Medicines, shaken and stirred: a critical review on the ecotoxicology of pharmaceutical mixtures. Philos. Trans R. Soc. Lond. B. Biol Sci. 369, 20130585 (2014).
pubmed: 25405972 pmcid: 4213595 doi: 10.1098/rstb.2013.0585
Rai, V. K. Role of amino acids in plant responses to stresses. Biologia Plantarum. 45, 481–487 (2002).
doi: 10.1023/A:1022308229759
Szabados, L. & Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 15, 89–97 (2010).
pubmed: 20036181 doi: 10.1016/j.tplants.2009.11.009
Batista-Silva, W. et al. The role of amino acid metabolism during abiotic stress release. Plant Cell. Environ. 42, 1630–1644 (2019).
pubmed: 30632176 doi: 10.1111/pce.13518
Obata, T. & Fernie, A. R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 69, 3225–3243 (2012).
pubmed: 22885821 pmcid: 3437017 doi: 10.1007/s00018-012-1091-5
Carillo, P. GABA shunt in Durum wheat. Front. Plant Sci. 9, 100 (2018).
pubmed: 29456548 pmcid: 5801424 doi: 10.3389/fpls.2018.00100
Woodrow, P. et al. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol. Plant. 159, 290–312 (2017).
pubmed: 27653956 doi: 10.1111/ppl.12513 pmcid: 27653956
Cohen, Y., Rubin, A. E. & Kilfin, G. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). European Journal of Plant Pathology 126, 553–573 (2010).
doi: 10.1007/s10658-009-9564-6
Thevenet, D. et al. The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress. New Phytol. 213, 552–559 (2017).
pubmed: 27782340 doi: 10.1111/nph.14298
Cohen, Y., Niderman, T., Mosinger, E. & Fluhr, R. Beta-aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol. 104, 59–66 (1994).
pubmed: 12232061 pmcid: 159162 doi: 10.1104/pp.104.1.59
Seifi, H. S. et al. Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytol. 199, 490–504 (2013).
pubmed: 23627463 doi: 10.1111/nph.12283
Forde, B. G. & Lea, P. J. Glutamate in plants: Metabolism, regulation, and signaling. J. Exp. Bot. 58, 2339–2358 (2007).
pubmed: 17578865 doi: 10.1093/jxb/erm121
Kinnersley, A. M. & Turano, F. J. Gamma aminobutyric acid (GABA) and plant responses to stress. Critic. Rev. Plant Sci. 19, 479–509 (2000).
doi: 10.1080/07352680091139277
Ramesh, S. A., Tyerman, S. D., Gilliham, M. & Xu, B. γ-Aminobutyric acid (GABA) signaling in plants. Cell. Mol. Life Sci. 74, 1577–1603 (2017).
pubmed: 27838745 doi: 10.1007/s00018-016-2415-7
Ramesh, S. A. et al. GABA signaling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nature Commun. 6, 7879 (2015).
doi: 10.1038/ncomms8879
Shelp, B. J., Bown, A. W. & McLean, M. D. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4, 446–452 (1999).
pubmed: 10529826 doi: 10.1016/S1360-1385(99)01486-7
Tan, K. R., Rudolph, U. & Lüscher, C. Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci. 34, 188–97 (2011).
pubmed: 21353710 pmcid: 4020178 doi: 10.1016/j.tins.2011.01.004
Griffin, C. E. III, Kaye, A. M., Bueno, F. R. & Kaye, A. D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner. J. 13, 214–223 (2013).
pubmed: 23789008 pmcid: 3684331
Shimajiri, Y., Oonishi, T., Ozaki, K., Kainou, K. & Akama, K. Genetic manipulation of the γ‐aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ‐aminobutyric acid transaminase (GABA‐T) lead to sustained and high levels of GABA accumulation in rice kernels. Plant Biotech. J. 11, 594–604 (2013).
doi: 10.1111/pbi.12050
Takayama, M. et al. Tomato glutamate decarboxylase genes SlGAD2 and SlGAD3 play key roles in regulating γ-aminobutyric acid levels in tomato (Solanum lycopersicum) Plant Cell Phys. 56, 1533–1545 (2015).
pubmed: 26009591 doi: 10.1093/pcp/pcv075
Amm, I., Sommer, T. & Wolf, D. H. Protein quality control and elimination of protein waste: the role of ubiquitin-proteasome system. Biochim. Biophys. Acta 1843, 182–197 (2014).
Ashraf, M., Akram, N. A., Al-Qurainy, F. & Foolad, M. R. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Adv. Agronomy 111, 249–296 (2011).
doi: 10.1016/B978-0-12-387689-8.00002-3
Shelp, B. J., Bown, A. W. & Faure, D. Extracellular γ-aminobutyrate mediates communication between plants and other organisms. Plant Physiol. 142, 1350–1352 (2006).
pubmed: 17151138 pmcid: 1676054 doi: 10.1104/pp.106.088955
Moshe, A. et al. Stress responses to Tomato yellow leaf curl virus (TYLCV) infection of resistant and susceptible tomato plants are different. Metabolomics S1, 006 (2012).
Akama, K. & Takaiwa, F. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J. Exp. Botany 58, 2699–2707 (2007).
doi: 10.1093/jxb/erm120
Zwighaft, Z. et al. Circadian clock control by polyamine levels through a mechanism that declines with age. Cell. Metab. 22, 874–885 (2015).
pubmed: 26456331 doi: 10.1016/j.cmet.2015.09.011

Auteurs

Rena Gorovits (R)

Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.

Iris Sobol (I)

Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.

Kazuhito Akama (K)

Department of Biological Science, Shimane University, Matsue, Shimane, 690-8504, Japan.

Benny Chefetz (B)

Institute of Soil and Water sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.

Henryk Czosnek (H)

Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel. hanokh.czosnek@mail.huji.ac.il.

Articles similaires

Humans Pharmaceutical Preparations Drug Utilization Prescription Drugs
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH