Pharmaceuticals in treated wastewater induce a stress response in tomato plants.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
05 02 2020
05 02 2020
Historique:
received:
19
08
2019
accepted:
13
01
2020
entrez:
7
2
2020
pubmed:
7
2
2020
medline:
13
11
2020
Statut:
epublish
Résumé
Pharmaceuticals remain in treated wastewater used to irrigate agricultural crops. Their effect on terrestrial plants is practically unknown. Here we tested whether these compounds can be considered as plant stress inducers. Several features characterize the general stress response in plants: production of reactive oxygen species acting as stress-response signals, MAPKs signaling cascade inducing expression of defense genes, heat shock proteins preventing protein denaturation and degradation, and amino acids playing signaling roles and involved in osmoregulation. Tomato seedlings bathing in a cocktail of pharmaceuticals (Carbamazepine, Valporic acid, Phenytoin, Diazepam, Lamotrigine) or in Carbamazepine alone, at different concentrations and during different time-periods, were used to study the patterns of stress-related markers. The accumulation of the stress-related biomarkers in leaf and root tissues pointed to a cumulative stress response, mobilizing the cell protection machinery to avoid metabolic modifications and to restore homeostasis. The described approach is suitable for the investigation of stress response of different crop plants to various contaminants present in treated wastewater.
Identifiants
pubmed: 32024917
doi: 10.1038/s41598-020-58776-z
pii: 10.1038/s41598-020-58776-z
pmc: PMC7002738
doi:
Substances chimiques
Pharmaceutical Preparations
0
Reactive Oxygen Species
0
Waste Water
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1856Références
Carter, L. J., Chefetz, B., Abdeen, Z. & Boxall, A. B. A. Emerging investigator series: towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. Environ. Sci. Process Impacts. 21, 605–622 (2019).
pubmed: 30932118
doi: 10.1039/C9EM00020H
Wu, X., Conkle, J. L., Ernst, F. & Gan, J. Treated wastewater irrigation: uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environ. Sci. Technol. 48, 11286–11293 (2014).
pubmed: 25211705
doi: 10.1021/es502868k
Christou, A., Karaolia, P., Hapeshi, E., Michael, C. & Fatta-Kassinos, D. Long-term wastewater irrigation of vegetables in real agricultural systems: concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment. Water Res. 109, 24–34 (2017).
pubmed: 27865170
doi: 10.1016/j.watres.2016.11.033
Paltiel, O. et al. Human exposure to wastewater-derived pharmaceuticals in fresh produce: a randomized controlled trial focusing on carbamazepine. Environ. Sci. Technol. 50, 4476–4482 (2016).
pubmed: 27021726
doi: 10.1021/acs.est.5b06256
Malchi, T., Maor, Y., Tadmor, G., Shenker, M. & Chefetz, B. Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ. Sci. Technol. 48, 9325–9333 (2014).
pubmed: 25026038
doi: 10.1021/es5017894
Rasheed, T., Bilal, M., Nabeel, M., Adeel, M. & Iqbal, H. M. N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. International 122, 52–66 (2019).
doi: 10.1016/j.envint.2018.11.038
European Commission. Proposal for a Regulation of the European Parliament and of the Council on minimum requirements for water reuse, https://ec.europa.eu/environment/water/pdf/water_reuse_regulation_impact_assessment.pdf (2018).
Jelic, A. et al. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment. Sci. Total Environ. 433, 352–361 (2012).
pubmed: 22819886
doi: 10.1016/j.scitotenv.2012.06.059
Subedi, B. & Kannan, K. Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, USA. Sci. Total Environ. 1(514), 273–80 (2015).
doi: 10.1016/j.scitotenv.2015.01.098
Miao, X.-S., Yang, J.-J. & Metcalfe, C. D. Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Eviron. Sci. Technol. 39, 7469–7475 (2005).
doi: 10.1021/es050261e
Shao, Y., Yang, K., Jia, R., Tian, C. & Zhu, Y. Degradation of Triclosan and Carbamazepine in two agricultural and garden soils with different textures amended with composted sewage sludge. Int. J. Environ. Res. Public Health. 15, 2557 (2018).
pmcid: 6267568
doi: 10.3390/ijerph15112557
pubmed: 6267568
Bahlmann, A., Brack, W., Schneider, R. J. & Krauss, M. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Res. 57, 104–114 (2014).
pubmed: 24704908
doi: 10.1016/j.watres.2014.03.022
Dai, G. et al. Major pharmaceuticals and personal care products (PPCPs) in wastewater treatment plant and receiving water in Beijing, China, and associated ecological risks. Bull. Environ. Contam. Toxicol. 92, 655–661 (2014).
pubmed: 24619361
doi: 10.1007/s00128-014-1247-0
Ratola, N., Cincinelli, A., Alves, A. & Katsoyiannis, A. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. J. Hazard. Mater. 239, 1–18 (2012).
pubmed: 22771351
doi: 10.1016/j.jhazmat.2012.05.040
Li, J., Dodgen, L., Ye, Q. & Gan, J. Degradation kinetics and metabolites of carbamazepine in soil. Environ. Sci. Technol. 47, 3678–3684 (2013).
pubmed: 23506704
doi: 10.1021/es304944c
Grossberger, A., Hadar, Y., Borch, T. & Chefetz, B. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater. Environ. Pollut. 185, 168–177 (2014).
pubmed: 24286691
doi: 10.1016/j.envpol.2013.10.038
Czajkowski, K. P. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ. Sci. Technol. 44, 6157–6161 (2010).
pubmed: 20704212
doi: 10.1021/es1011115
Dalkmann, L. et al. Uptake of pharmaceuticals, hormones and parabens into vegetables grown in soil fertilized with municipal biosolids. Sci. Total Environ. 431, 233–236 (2012).
doi: 10.1016/j.scitotenv.2012.05.017
Malchi, T., Maor, Y., Tadmor, G., Shenker, M. & Chefetz, B. Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. Environ. Sci. Technol. 48, 9325–9333 (2014).
pubmed: 25026038
doi: 10.1021/es5017894
Riemenschneider, C., Seiwert, B., Moeder, M., Schwarz, D. & Reemtsma, T. Extensive transformation of the pharmaceutical carbamazepine following uptake into intact tomato plants. Environ. Sci. Technol. 51, 6100–6109 (2017).
pubmed: 28506063
doi: 10.1021/acs.est.6b06485
Ben Mordechay, E., Tarchitzky, J., Chen, Y., Shenker, M. & Chefetz, B. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine. Environ. Pollut. 232, 164–172 (2018).
pubmed: 28935405
doi: 10.1016/j.envpol.2017.09.029
Hughes, S. R., Kay, P. & Brown, L. E. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 47, 2661–677 (2013).
doi: 10.1021/es3030148
Bartha, B., Huber, C., Harpaintner, R. & Schröder, P. Effects of acetaminophen in Brassica juncea L. Czern.: investigation of uptake, translocation, detoxification, and the induced defense pathways. Environ. Sci. Pollut. Res. 17, 1553–1562 (2010).
doi: 10.1007/s11356-010-0342-y
Sun, C., Dudley, S., Trumble, J. & Gan, J. Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants. Environ. Pollut. 234, 39–47 (2018).
pubmed: 29156440
doi: 10.1016/j.envpol.2017.11.041
Christou, A., Michael, C., Fatta-Kassinos, D. & Fotopoulos, V. Can the pharmaceutically active compounds released in agroecosystems be considered as emerging plant stressors? Environ. Int. 114, 360–364 (2018).
pubmed: 29555371
doi: 10.1016/j.envint.2018.03.003
Jalmi., S. K. & Sinha, A. K. ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Front. Plant Sci. 6, 769 (2015).
pubmed: 26442079
pmcid: 4585162
doi: 10.3389/fpls.2015.00769
Jacob, P., Hirt, H. & Bendahmane, A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotech. J. 15, 405–414 (2017).
doi: 10.1111/pbi.12659
Seifikalhor, M., Aliniaeifard, S., Hassani, B., Nikham, V. & Lastochkina, O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Re. 38, 847–867 (2019).
doi: 10.1007/s00299-019-02396-z
Park, C. J. & Seo, Y. S. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol. J. 31, 323–333 (2015).
pubmed: 4677741
pmcid: 4677741
doi: 10.5423/PPJ.RW.08.2015.0150
Gorovits, R. & Czosnek, H. The involvement of heat shock proteins in the establishment of Tomato Yellow leaf curl virus infection. Front. Plant Sci. 8, 355–363 (2017).
pubmed: 5352662
pmcid: 5352662
doi: 10.3389/fpls.2017.00355
Bigeard, J. & Hirt, H. Nuclear signaling of plant MAPKs. Frontiers in Plant Science 9, 469 (2018).
pubmed: 29696029
pmcid: 5905223
doi: 10.3389/fpls.2018.00469
Backhaus, T. Medicines, shaken and stirred: a critical review on the ecotoxicology of pharmaceutical mixtures. Philos. Trans R. Soc. Lond. B. Biol Sci. 369, 20130585 (2014).
pubmed: 25405972
pmcid: 4213595
doi: 10.1098/rstb.2013.0585
Rai, V. K. Role of amino acids in plant responses to stresses. Biologia Plantarum. 45, 481–487 (2002).
doi: 10.1023/A:1022308229759
Szabados, L. & Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 15, 89–97 (2010).
pubmed: 20036181
doi: 10.1016/j.tplants.2009.11.009
Batista-Silva, W. et al. The role of amino acid metabolism during abiotic stress release. Plant Cell. Environ. 42, 1630–1644 (2019).
pubmed: 30632176
doi: 10.1111/pce.13518
Obata, T. & Fernie, A. R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 69, 3225–3243 (2012).
pubmed: 22885821
pmcid: 3437017
doi: 10.1007/s00018-012-1091-5
Carillo, P. GABA shunt in Durum wheat. Front. Plant Sci. 9, 100 (2018).
pubmed: 29456548
pmcid: 5801424
doi: 10.3389/fpls.2018.00100
Woodrow, P. et al. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol. Plant. 159, 290–312 (2017).
pubmed: 27653956
doi: 10.1111/ppl.12513
pmcid: 27653956
Cohen, Y., Rubin, A. E. & Kilfin, G. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). European Journal of Plant Pathology 126, 553–573 (2010).
doi: 10.1007/s10658-009-9564-6
Thevenet, D. et al. The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress. New Phytol. 213, 552–559 (2017).
pubmed: 27782340
doi: 10.1111/nph.14298
Cohen, Y., Niderman, T., Mosinger, E. & Fluhr, R. Beta-aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol. 104, 59–66 (1994).
pubmed: 12232061
pmcid: 159162
doi: 10.1104/pp.104.1.59
Seifi, H. S. et al. Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytol. 199, 490–504 (2013).
pubmed: 23627463
doi: 10.1111/nph.12283
Forde, B. G. & Lea, P. J. Glutamate in plants: Metabolism, regulation, and signaling. J. Exp. Bot. 58, 2339–2358 (2007).
pubmed: 17578865
doi: 10.1093/jxb/erm121
Kinnersley, A. M. & Turano, F. J. Gamma aminobutyric acid (GABA) and plant responses to stress. Critic. Rev. Plant Sci. 19, 479–509 (2000).
doi: 10.1080/07352680091139277
Ramesh, S. A., Tyerman, S. D., Gilliham, M. & Xu, B. γ-Aminobutyric acid (GABA) signaling in plants. Cell. Mol. Life Sci. 74, 1577–1603 (2017).
pubmed: 27838745
doi: 10.1007/s00018-016-2415-7
Ramesh, S. A. et al. GABA signaling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nature Commun. 6, 7879 (2015).
doi: 10.1038/ncomms8879
Shelp, B. J., Bown, A. W. & McLean, M. D. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4, 446–452 (1999).
pubmed: 10529826
doi: 10.1016/S1360-1385(99)01486-7
Tan, K. R., Rudolph, U. & Lüscher, C. Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci. 34, 188–97 (2011).
pubmed: 21353710
pmcid: 4020178
doi: 10.1016/j.tins.2011.01.004
Griffin, C. E. III, Kaye, A. M., Bueno, F. R. & Kaye, A. D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner. J. 13, 214–223 (2013).
pubmed: 23789008
pmcid: 3684331
Shimajiri, Y., Oonishi, T., Ozaki, K., Kainou, K. & Akama, K. Genetic manipulation of the γ‐aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ‐aminobutyric acid transaminase (GABA‐T) lead to sustained and high levels of GABA accumulation in rice kernels. Plant Biotech. J. 11, 594–604 (2013).
doi: 10.1111/pbi.12050
Takayama, M. et al. Tomato glutamate decarboxylase genes SlGAD2 and SlGAD3 play key roles in regulating γ-aminobutyric acid levels in tomato (Solanum lycopersicum) Plant Cell Phys. 56, 1533–1545 (2015).
pubmed: 26009591
doi: 10.1093/pcp/pcv075
Amm, I., Sommer, T. & Wolf, D. H. Protein quality control and elimination of protein waste: the role of ubiquitin-proteasome system. Biochim. Biophys. Acta 1843, 182–197 (2014).
Ashraf, M., Akram, N. A., Al-Qurainy, F. & Foolad, M. R. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Adv. Agronomy 111, 249–296 (2011).
doi: 10.1016/B978-0-12-387689-8.00002-3
Shelp, B. J., Bown, A. W. & Faure, D. Extracellular γ-aminobutyrate mediates communication between plants and other organisms. Plant Physiol. 142, 1350–1352 (2006).
pubmed: 17151138
pmcid: 1676054
doi: 10.1104/pp.106.088955
Moshe, A. et al. Stress responses to Tomato yellow leaf curl virus (TYLCV) infection of resistant and susceptible tomato plants are different. Metabolomics S1, 006 (2012).
Akama, K. & Takaiwa, F. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J. Exp. Botany 58, 2699–2707 (2007).
doi: 10.1093/jxb/erm120
Zwighaft, Z. et al. Circadian clock control by polyamine levels through a mechanism that declines with age. Cell. Metab. 22, 874–885 (2015).
pubmed: 26456331
doi: 10.1016/j.cmet.2015.09.011