Using parametric model order reduction for inverse analysis of large nonlinear cardiac simulations.

cardiac mechanics inverse analysis parametric model order reduction proper orthogonal decomposition

Journal

International journal for numerical methods in biomedical engineering
ISSN: 2040-7947
Titre abrégé: Int J Numer Method Biomed Eng
Pays: England
ID NLM: 101530293

Informations de publication

Date de publication:
04 2020
Historique:
received: 17 10 2018
revised: 29 10 2019
accepted: 25 01 2020
pubmed: 6 2 2020
medline: 20 7 2021
entrez: 6 2 2020
Statut: ppublish

Résumé

Predictive high-fidelity finite element simulations of human cardiac mechanics commonly require a large number of structural degrees of freedom. Additionally, these models are often coupled with lumped-parameter models of hemodynamics. High computational demands, however, slow down model calibration and therefore limit the use of cardiac simulations in clinical practice. As cardiac models rely on several patient-specific parameters, just one solution corresponding to one specific parameter set does not at all meet clinical demands. Moreover, while solving the nonlinear problem, 90% of the computation time is spent solving linear systems of equations. We propose to reduce the structural dimension of a monolithically coupled structure-Windkessel system by projection onto a lower-dimensional subspace. We obtain a good approximation of the displacement field as well as of key scalar cardiac outputs even with very few reduced degrees of freedom, while achieving considerable speedups. For subspace generation, we use proper orthogonal decomposition of displacement snapshots. Following a brief comparison of subspace interpolation methods, we demonstrate how projection-based model order reduction can be easily integrated into a gradient-based optimization. We demonstrate the performance of our method in a real-world multivariate inverse analysis scenario. Using the presented projection-based model order reduction approach can significantly speed up model personalization and could be used for many-query tasks in a clinical setting.

Identifiants

pubmed: 32022424
doi: 10.1002/cnm.3320
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e3320

Informations de copyright

© 2020 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

Références

Nordsletten D, Niederer S, Nash M, Hunter P, Smith N. Coupling multi-physics models to cardiac mechanics. Prog Biophys Mol Biol. 2011;104(1):77-88.
Laadhari A, Ruiz-Baier R, Quarteroni A. Fully Eulerian finite element approximation of a fluid-structure interaction problem in cardiac cells. Int J Numer Methods Eng. 2013;96(11):712-738.
Westerhof N, Lankhaar J-W, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2008;47(2):131-141.
Chabiniok R, Wang VY, Hadjicharalambous M, et al. Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus. 2016;6(2):20150083.
Kerckhoffs RC, Neal ML, Gu Q, Bassingthwaighte JB, Omens JH, McCulloch A. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng. 2007;35(1):1-18.
Sainte-Marie J, Chapelle D, Cimrman R, Sorine M. Modeling and estimation of the cardiac electromechanical activity. Comput Struct. 2006;84(28):1743-1759.
Fritz T, Wieners C, Seemann G, Steen H, Dössel O. Simulation of the contraction of the ventricles in a human heart model including atria and pericardium. Biomech Model Mechanobiol. 2013;13(3):1-15.
Hirschvogel M, Bassilious M, Jagschies L, Wildhirt S, Gee M. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: experiment-based parameter estimation for patient-specific cardiac mechanics. Int J Numer Methods Biomed Eng. 2016;33(8):e2842.
Pfaller M. R, Hörmann J. M, Weigl M, Nagler A, Chabiniok R, Bertoglio C, Wall W. A. The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling. Biomech Model Mechanobiol. 2019;18(2):503-529.
Arts T, Reneman RS, Veenstra PC. A model of the mechanics of the left ventricle. Ann Biomed Eng. 1979;7(3):299-318.
Caruel M, Chabiniok R, Moireau P, Lecarpentier Y, Chapelle D. Dimensional reductions of a cardiac model for effective validation and calibration. Biomech Model Mechanobiol. 2014;13(4):897-914.
Moulton MJ, Hong BD, Secomb TW. Simulation of left ventricular dynamics using a low-order mathematical model. Cardiovasc Eng Technol. 2017;8(4):480-494.
Lumens J, Delhaas T, Kirn B, Arts T. Three-Wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann Biomed Eng. 2009;37(11):2234-2255.
Biehler J, Gee MW, Wall WA. Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme. Biomech Model Mechanobiol. 2015;14(3):489-513.
Gerbeau J-F, Lombardi D. Approximated lax pairs for the reduced order integration of nonlinear evolution equations. J Comput Phys. 2014;265:246-269.
Gerbeau J-F, Lombardi D, Schenone E. Reduced order model in cardiac electrophysiology with approximated lax pairs. Adv Comput Math. 2015;41(5):1103-1130.
Pagani S, Manzoni A, Quarteroni A. Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method. Comput Methods Appl Mech Eng. 2018;340:530-558.
Krysl P, Lall S, Marsden J. E. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int J Numer Methods Eng. 2001;51(4):479-504.
Milani R, Quarteroni A, Rozza G. Reduced basis method for linear elasticity problems with many parameters. Comput Methods Appl Mech Eng. 2008;197(51):4812-4829.
Schilders WHA, Lutowska A. A Novel Approach to Model Order Reduction for Coupled Multiphysics Problems. Cham: Springer; 2014:1-49.
Wall, WA, et al (2018) Baci: a parallel multiphysics simulation environment. Institute for Computational Mechanics, Technische Universität München; Technical report.
Bonomi D, Manzoni A, Quarteroni A. A matrix DEIM technique for model reduction of nonlinear parametrized problems in cardiac mechanics. Comput Methods Appl Mech Eng. 2017;324:300-326.
Chapelle D, Gariah A, Moireau P, Sainte-Marie J. A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems-analysis, assessments and applications to parameter estimation. ESAIM: Math Modell Numer Anal. 2013;47(6):1821-1843.
Ballarin F, Faggiano E, Manzoni A, et al. Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts. Biomech Model Mechanobiol. 2017;16(4):1373-1399.
Benner P, Gugercin S, Willcox K. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 2015;57(4):483-531.
Amsallem D, Farhat C. Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 2008;46(7):1803-1813.
Griewank A. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim Methods Software. 1992;1(1):35-54.
Sermesant M, Moireau P, Camara O, et al. Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med Image Anal. 2006;10(4):642-656. (special issue).
Chávez CE, Zemzemi N, Coudière Y, Alonso-Atienza F, Álvarez D. Inverse problem of electrocardiography: estimating the location of cardiac ischemia in a 3D realistic geometry. In: Assen H, Bovendeerd P, Delhaas T, eds. Functional Imaging and Modeling of the Heart. Cham: Springer; 2015:393-401.
Finsberg H, Xi C, Tan JL, et al. Efficient estimation of personalized biventricular mechanical function employing gradient-based optimization. Int J Numer Methods Biomed Eng. 2018;34(7):e2982.
Chabiniok R, Moireau P, Lesault PF, Rahmouni A, Deux JF, Chapelle D. Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol. 2012;11(5):609-630.
Bertoglio C, Moireau P, Gerbeau J.-F. Sequential parameter estimation for fluid-structure problems: application to hemodynamics. Int J Numer Methods Biomed Eng2012;28(4):434-455.
Moireau P, Bertoglio C, Xiao N, et al. Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomech Model Mechanobiol. 2013;12(3):475-496.
Asner L et al. Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech Model Mechanobiol. 2015; 15(9):1121-1139.
Peherstorfer B, Willcox K, Gunzburger M. Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 2018;60(3):550-591.
Yue Y, Meerbergen K. Accelerating optimization of parametric linear systems by model order reduction. SIAM J Optim. 2013;23(2):1344-1370.
Lassila T, Manzoni A, Quarteroni A, Rozza G. A reduced computational and geometrical framework for inverse problems in hemodynamics. Int J Numer Methods Biomed Eng. 2013;29(7):741-776.
Molléro R, Pennec X, Delingette H, Garny A, Ayache N, Sermesant M. Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models. Biomech Model Mechanobiol. 2018;17(1):285-300.
Boulakia M, Schenone E, Gerbeau J-F. Reduced-order modeling for cardiac electrophysiology. Application to parameter identification. Int J Numer Methods Biomed Eng. 2012;28(6-7):727-744.
Corrado C, Gerbeau J-F, Moireau P. Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography. J Comput Phys. 2015;283:271-298.
Holzapfel GA, Ogden RW. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A Math Phys Eng Sci. 2009;367(1902):3445-3475.
Gültekin O, Sommer G, Holzapfel GA. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Comput Methods Biomech Biomed Eng. 2016;19(15):1647-1664.
Newmark NM. A method of computation for structural dynamics. J Eng Mech Div. 1959;85(3):67-94.
Chung J, Hulbert G. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech. 1993;60(2):371-375.
Crank J, Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math Proc Cambridge Philos Soc. 1947;43(1):50-67.
Kunisch K, Volkwein S. Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J Optim Theory Appl. 1999;102(2):345-371.
Chatterjee A. An introduction to the proper orthogonal decomposition. Curr Sci. 2000;78(7):808-817.
Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal. 2002;40(2):492-515.
Liang Y et al. Proper orthogonal decomposition and its applications-part I: theory. J Sound Vib. 2002;252(3):527-544.
Kerschen G, Golinval J-C, Vakakis AF, Bergman LA. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlin Dyn. 2005;41(1):147-169.
Allemang RJ, Brown DL. A correlation coefficient for modal vector analysis. Proc Int Modal Anal Conf. 1982;1:110-116.
Allemang RJ. The modal assurance criterion-twenty years of use and abuse. Sound Vibr. 2003;37(8):14-23.
Heroux MA, Phipps ET, Salinger AG, et al. An overview of the Trilinos project. ACM Trans Math Software. 2005;31(3):397-423.
Geuzaine C, Remacle J-F. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng. 2009;79(11):1309-1331.
Levenberg K. A method for the solution of certain non-linear problems in least squares. Quar Appl Math. 1944;2(2):164-168.
Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11(2):431-441.
Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput. 2010;32(5):2737-2764.
Farhat C, Chapman T, Avery P. Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int J Numer Methods Eng. 2015;102(5):1077-1110.

Auteurs

M R Pfaller (MR)

Institute for Computational Mechanics, Technical University of Munich, Garching b. München, Germany.

M Cruz Varona (M)

Chair of Automatic Control, Technical University of Munich, Garching b. München, Germany.

J Lang (J)

Institute for Computational Mechanics, Technical University of Munich, Garching b. München, Germany.

C Bertoglio (C)

Bernoulli Institute, University of Groningen, AG Groningen, The Netherlands.

W A Wall (WA)

Institute for Computational Mechanics, Technical University of Munich, Garching b. München, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH