ATR is a MYB regulated gene and potential therapeutic target in adenoid cystic carcinoma.


Journal

Oncogenesis
ISSN: 2157-9024
Titre abrégé: Oncogenesis
Pays: United States
ID NLM: 101580004

Informations de publication

Date de publication:
30 Jan 2020
Historique:
received: 19 09 2019
accepted: 16 01 2020
revised: 09 12 2019
entrez: 1 2 2020
pubmed: 1 2 2020
medline: 1 2 2020
Statut: epublish

Résumé

Adenoid cystic carcinoma (ACC) is a rare cancer that preferentially occurs in the head and neck, breast, as well as in other sites. It is an aggressive cancer with high rates of recurrence and distant metastasis. Patients with advanced disease are generally incurable due to the lack of effective systemic therapies. Activation of the master transcriptional regulator MYB is the genomic hallmark of ACC. MYB activation occurs through chromosomal translocation, copy number gain or enhancer hijacking, and is the key driving event in the pathogenesis of ACC. However, the functional consequences of alternative mechanisms of MYB activation are still uncertain. Here, we show that overexpression of MYB or MYB-NFIB fusions leads to transformation of human glandular epithelial cells in vitro and results in analogous cellular and molecular consequences. MYB and MYB-NFIB expression led to increased cell proliferation and upregulation of genes involved in cell cycle control, DNA replication, and DNA repair. Notably, we identified the DNA-damage sensor kinase ATR, as a MYB downstream therapeutic target that is overexpressed in primary ACCs and ACC patient-derived xenografts (PDXs). Treatment with the clinical ATR kinase inhibitor VX-970 induced apoptosis in MYB-positive ACC cells and growth inhibition in ACC PDXs. To our knowledge, ATR is the first example of an actionable target downstream of MYB that could be further exploited for therapeutic opportunities in ACC patients. Our findings may also have implications for other types of neoplasms with activation of the MYB oncogene.

Identifiants

pubmed: 32001675
doi: 10.1038/s41389-020-0194-3
pii: 10.1038/s41389-020-0194-3
pmc: PMC6992744
doi:

Types de publication

Journal Article

Langues

eng

Pagination

5

Références

Andersson, M. K. & Stenman, G. The landscape of gene fusions and somatic mutations in salivary gland neoplasms—implications for diagnosis and therapy. Oral. Oncol. 57, 63–69 (2016).
doi: 10.1016/j.oraloncology.2016.04.002
Stenman, G. L., Said-AL-Naief, N., van Zante, A. & Yarbrough, W. G. in WHO Classification of Head and Neck Tumours, 4th edn (eds El-Naggar, A. K., Chan, J. K. C., Grandis, J. R., Takata, T. & Slootweg, P. J.), Vol. 9, 164–165 (IARC, Lyon, 2017).
Laurie, S. A., Ho, A. L., Fury, M. G., Sherman, E. & Pfister, D. G. Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: a systematic review. Lancet Oncol. 12, 815–824 (2011).
doi: 10.1016/S1470-2045(10)70245-X
Carlson, J. et al. Salivary gland cancer: an update on present and emerging therapies. Am. Soc. Clin. Oncol. Educ. Book 33, 257–263 (2013).
doi: 10.1200/EdBook_AM.2013.33.257
Stenman, G., Sandros, J., Dahlenfors, R., Juberg-Ode, M. & Mark, J. 6q- and loss of the Y chromosome–two common deviations in malignant human salivary gland tumors. Cancer Genet. Cytogenet 22, 283–293 (1986).
doi: 10.1016/0165-4608(86)90021-X
Persson, M. et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl Acad. Sci. USA 106, 18740–18744 (2009).
doi: 10.1073/pnas.0909114106
Ramsay, R. G. & Gonda, T. J. MYB function in normal and cancer cells. Nat. Rev. Cancer 8, 523–534 (2008).
doi: 10.1038/nrc2439
Becker-Santos, D. D., Lonergan, K. M., Gronostajski, R. M. & Lam, W. L. Nuclear factor I/B: a master regulator of cell differentiation with paradoxical roles in cancer. EBioMedicine 22, 2–9 (2017).
doi: 10.1016/j.ebiom.2017.05.027
Persson, M. et al. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Genes Chromosomes Cancer 51, 805–817 (2012).
doi: 10.1002/gcc.21965
Drier, Y. et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat. Genet. 48, 265–272 (2016).
doi: 10.1038/ng.3502
Mitani, Y. et al. Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations. Clin. Cancer Res. 22, 725–733 (2016).
doi: 10.1158/1078-0432.CCR-15-2867-T
Brayer, K. J., Frerich, C. A., Kang, H. & Ness, S. A. Recurrent fusions in MYB and MYBL1 define a common, transcription factor-driven oncogenic pathway in salivary gland adenoid cystic carcinoma. Cancer Disco. 6, 176–187 (2016).
doi: 10.1158/2159-8290.CD-15-0859
Brill, L. B. 2nd et al. Analysis of MYB expression and MYB-NFIB gene fusions in adenoid cystic carcinoma and other salivary neoplasms. Mod. Pathol. 24, 1169–1176 (2011).
doi: 10.1038/modpathol.2011.86
Ho, A. S. et al. The mutational landscape of adenoid cystic carcinoma. Nat. Genet. 45, 791–798 (2013).
doi: 10.1038/ng.2643
Stephens, P. J. et al. Whole exome sequencing of adenoid cystic carcinoma. J. Clin. Investig. 123, 2965–2968 (2013).
doi: 10.1172/JCI67201
Andersson, M. K., Afshari, M. K., Andren, Y., Wick, M. J. & Stenman, G. Targeting the oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition of IGF1R/AKT signaling. J. Natl Cancer Inst. 109, djx017 (2017).
Phuchareon, J., Ohta, Y., Woo, J. M., Eisele, D. W. & Tetsu, O. Genetic profiling reveals cross-contamination and misidentification of 6 adenoid cystic carcinoma cell lines: ACC2, ACC3, ACCM, ACCNS, ACCS and CAC2. PloS ONE 4, e6040 (2009).
doi: 10.1371/journal.pone.0006040
Xie, F. et al. Identification of a potent inhibitor of CREB-mediated gene transcription with efficacious in vivo anticancer activity. J. Med. Chem. 58, 5075–5087 (2015).
doi: 10.1021/acs.jmedchem.5b00468
Uttarkar, S. et al. Naphthol AS-E phosphate inhibits the activity of the transcription factor Myb by blocking the interaction with the KIX domain of the coactivator p300. Mol. Cancer Ther. 14, 1276–1285 (2015).
doi: 10.1158/1535-7163.MCT-14-0662
Gaillard, H., Garcia-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).
doi: 10.1038/nrc3916
Lecona, E. & Fernandez-Capetillo, O. Targeting ATR in cancer. Nat. Rev. Cancer 18, 586–595 (2018).
doi: 10.1038/s41568-018-0034-3
Hilton, B. A. et al. ATR plays a direct antiapoptotic role at mitochondria, which is regulated by prolyl isomerase Pin1. Mol. Cell 60, 35–46 (2015).
doi: 10.1016/j.molcel.2015.08.008
Frerich, C. A. et al. Transcriptomes define distinct subgroups of salivary gland adenoid cystic carcinoma with different driver mutations and outcomes. Oncotarget 9, 7341–7358 (2018).
doi: 10.18632/oncotarget.23641
Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).
doi: 10.1016/S1046-2023(03)00032-X
Corda, G. et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J. Pathol. 241, 350–361 (2017).
doi: 10.1002/path.4841
Moskaluk, C. A. et al. Development and characterization of xenograft model systems for adenoid cystic carcinoma. Lab Invest. 91, 1480–1490 (2011).
doi: 10.1038/labinvest.2011.105

Auteurs

Mattias K Andersson (MK)

Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden.

Giovanna Mangiapane (G)

Department of Life Sciences, Research Institute for the Environment, Health and Societies, Brunel University London, UB8 3PH, Uxbridge, UK.

Paloma Tejera Nevado (PT)

Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden.

Alexia Tsakaneli (A)

Department of Life Sciences, Research Institute for the Environment, Health and Societies, Brunel University London, UB8 3PH, Uxbridge, UK.

Therese Carlsson (T)

Sahlgrenska Cancer Center, Department of Medical Chemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.

Gabriele Corda (G)

Department of Life Sciences, Research Institute for the Environment, Health and Societies, Brunel University London, UB8 3PH, Uxbridge, UK.

Valentina Nieddu (V)

Department of Life Sciences, Research Institute for the Environment, Health and Societies, Brunel University London, UB8 3PH, Uxbridge, UK.

Carla Abrahamian (C)

Department of Life Sciences, Research Institute for the Environment, Health and Societies, Brunel University London, UB8 3PH, Uxbridge, UK.

Olesya Chayka (O)

Department of Life Sciences, Research Institute for the Environment, Health and Societies, Brunel University London, UB8 3PH, Uxbridge, UK.

Lilam Rai (L)

Department of Life Sciences, Research Institute for the Environment, Health and Societies, Brunel University London, UB8 3PH, Uxbridge, UK.

Michael Wick (M)

South Texas Accelerated Research Therapeutics (START), San Antonio, TX, 78229, USA.

Amanda Kedaigle (A)

Adenoid Cystic Carcinoma Research Foundation, Needham, MA, 02494, USA.

Göran Stenman (G)

Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden. goran.stenman@llcr.med.gu.se.

Arturo Sala (A)

Department of Life Sciences, Research Institute for the Environment, Health and Societies, Brunel University London, UB8 3PH, Uxbridge, UK. Arturo.sala@brunel.ac.uk.

Classifications MeSH