Field generated nematic microflows via backflow mechanism.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 Jan 2020
29 Jan 2020
Historique:
received:
08
05
2019
accepted:
26
11
2019
entrez:
31
1
2020
pubmed:
31
1
2020
medline:
31
1
2020
Statut:
epublish
Résumé
Generation of flow is an important aspect in microfluidic applications and generally relies on external pumps or embedded moving mechanical parts which pose distinct limitations and protocols on the use of microfluidic systems. A possible approach to avoid moving mechanical parts is to generate flow by changing some selected property or structure of the fluid. In fluids with internal orientational order such as nematic liquid crystals, this process of flow generation is known as the backflow effect. In this article, we demonstrate the contact-free generation of microfluidic material flows in nematic fluids -including directed contact-free pumping- by external electric and optical fields based on the dynamic backflow coupling between nematic order and material flow. Using numerical modelling, we design efficient shaping and driving of the backflow-generated material flow using spatial profiles and time modulations of electric fields with oscillating amplitude, rotating electric fields and optical fields. Particularly, we demonstrate how such periodic external fields generate efficient net average nematic flows through a microfluidic channel, that avoid usual invariance under time-reversal limitations. We show that a laser beam with rotating linear polarization can create a vortex-like flow structure and can act as a local flow pump without moving mechanical parts. The work could be used for advanced microfluidic applications, possibly by creating custom microfluidic pathways without predefined channels based on the adaptivity of an optical set-up, with a far reaching unconventional idea to realize channel-less microfluidics.
Identifiants
pubmed: 31996700
doi: 10.1038/s41598-020-57944-5
pii: 10.1038/s41598-020-57944-5
pmc: PMC6989461
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1446Subventions
Organisme : Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
ID : P1-0099, L1-8135, J1-9149 and N1-0124
Organisme : Ministrstvo za visoko šolstvo, znanost in tehnologijo (Ministry of Higher Education, Science and Technology of the Republic of Slovenia)
ID : Early career researcher 2.1 grant
Références
Nge, P. N., Rogers, C. I. & Woolley, A. T. Advances in Microfluidic Materials, Functions, Integration, and Applications. Chem. Rev. 113, 2550 (2013).
pubmed: 23410114
pmcid: 3624029
doi: 10.1021/cr300337x
Mark, D., Haeberle, S., Roth, G., vonStetten, F. & Zengerle, R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39, 1153 (2010).
pubmed: 20179830
doi: 10.1039/b820557b
Hou, X. et al. Interplay between materials and microfluidics. Nat. Rev. Mater 2, 17016 (2017).
Tang, S.-Y. et al. Liquid metal enabled pump. Proc. Natl. Acad. Sci. 111, 3304 (2014).
pubmed: 24550485
doi: 10.1073/pnas.1319878111
Zhang, K. et al. Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11, 1389 (2011).
pubmed: 21331412
doi: 10.1039/c0lc00520g
Chen, X. & Shen, J. Review of membranes in microfluidics. J. Chem. Technol. Biotechnol. 92, 271 (2017).
doi: 10.1002/jctb.5105
Ober, T. J., Foresti, D. & Lewis, J. A. Active mixing of complex fluids at the microscale. Proc. Natl. Acad. Sci. 112, 12293 (2015).
pubmed: 26396254
doi: 10.1073/pnas.1509224112
Fidalgo, L. et al. From Microdroplets to Microfluidics: Selective Emulsion Separation in Microfluidic Devices. Angew. Chem. 120, 2072 (2008).
doi: 10.1002/ange.200704903
Wang, X., Cheng, C., Wang, S. & Liu, S. Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6, 145 (2009).
pubmed: 20126306
doi: 10.1007/s10404-008-0399-9
Choi, K., Ng, A. H., Fobel, R. & Wheeler, A. R. Digital Microfluidics. Annual Review of Analytical Chemistry 5, 413 (2012).
pubmed: 22524226
doi: 10.1146/annurev-anchem-062011-143028
Miralles, V., Huerre, A., Malloggi, F. & Jullien, M.-C. A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications. Diagnostics 3, 33 (2013).
pubmed: 26835667
pmcid: 4665581
doi: 10.3390/diagnostics3010033
Pumera, M. & Escarpa, A. Electrochemistry in Microfluidics and Capillary Electrophoresis. ELECTROPHORESIS 32, 793 (2011).
pubmed: 21480299
doi: 10.1002/elps.201190021
Fan, X. & White, I. M. Optofluidic microsystems for chemical and biological analysis. Nature Photon 5, 591 (2011).
doi: 10.1038/nphoton.2011.206
Yeo, L. Y. & Friend, J. R. Surface Acoustic Wave Microfluidics. Annu. Rev. Fluid Mech. 46, 379 (2014).
doi: 10.1146/annurev-fluid-010313-141418
Luo, J. K. et al. Moving-part-free microfluidic systems for lab-on-a-chip. J. Micromech. Microeng. 19, 054001 (2009).
doi: 10.1088/0960-1317/19/5/054001
Wheeler, A. R. Putting Electrowetting to Work. Science 322, 539 (2008).
pubmed: 18948529
doi: 10.1126/science.1165719
Tavana, H. et al. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat. Mater. 8, 736 (2009).
pubmed: 19684584
pmcid: 2782768
doi: 10.1038/nmat2515
Sánchez, S., Soler, L. & Katuri, J. Chemically Powered Micro- and Nanomotors. Angew. Chem. Int. Ed. 54, 1414 (2015).
doi: 10.1002/anie.201406096
Walsh, E. J. et al. Microfluidics with fluid walls. Nat. Commun. 8, 4974 (2017).
Sengupta, A., Bahr, C. & Herminghaus, S. Topological microfluidics for flexible micro-cargo concepts. Soft Matter 9, 7251 (2013).
doi: 10.1039/c3sm50677k
Na, Y.-J., Yoon, T.-Y., Park, S., Lee, B. & Lee, S.-D. Electrically Programmable Nematofluidics with a High Level of Selectivity in a Hierarchically Branched Architecture. Chem. Phys. Chem. 11, 101 (2010).
pubmed: 19856376
doi: 10.1002/cphc.200900778
Fleischmann, E.-K. et al. One-piece micropumps from liquid crystalline core-shell particles. Nat. Commun. 3, 1178 (2012).
pubmed: 23132028
doi: 10.1038/ncomms2193
Ohzono, T. & Fukuda, J. Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves. Nat. Commun. 3, 701 (2012).
pubmed: 22426222
pmcid: 3293426
doi: 10.1038/ncomms1709
Luo, Y., Beller, D. A., Boniello, G., Serra, F. & Stebe, K. J. Tunable colloid trajectories in nematic liquid crystals near wavy walls. Nat. Commun. 9, 1253751 (2018).
Giomi, L., Kos, Ž., Ravnik, M. & Sengupta, A. Cross-talk between topological defects in different fields revealed by nematic microfluidics. Proc. Natl. Acad. Sci. 114, E5771 (2017).
pubmed: 28674012
doi: 10.1073/pnas.1702777114
Pollard, J., Posnjak, G., Čopar, S., Muševič, I. & Alexander, G. P. Point Defects, Topological Chirality, and Singularity Theory in Cholesteric Liquid-Crystal Droplets. Phys. Rev. X 9, 1442 (2019).
Pieranski, P., Hulin, J.-P. & Godinho, M. H. Rheotropism of the dowser texture. Eur. Phys. J. E 40, 619 (2017).
doi: 10.1140/epje/i2017-11598-0
Emeršič, T. et al. Sculpting stable structures in pure liquids. Science Advances 5, eaav4283 (2019).
pubmed: 30793033
pmcid: 6377271
doi: 10.1126/sciadv.aav4283
Woodhouse, F. G. & Dunkel, J. Active matter logic for autonomous microfluidics. Nat. Commun. 8, 15169 (2017).
pubmed: 28440273
pmcid: 5414041
doi: 10.1038/ncomms15169
Zhang, R., Roberts, T., Aranson, I. S. & de Pablo, J. J. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring. J. Chem. Phys. 144, 084905 (2016).
pubmed: 26931724
doi: 10.1063/1.4940342
Tóth, G., Denniston, C. & Yeomans, J. M. Hydrodynamics of Topological Defects in Nematic Liquid Crystals. Phys. Rev. Lett. 88, 105504 (2002).
pubmed: 11909370
doi: 10.1103/PhysRevLett.88.105504
Blanc, C., Svenšek, D., Žumer, S. & Nobili, M. Dynamics of Nematic Liquid Crystal Disclinations: The Role of the Backflow. Phys. Rev. Lett. 95, 097802 (2005).
pubmed: 16197250
doi: 10.1103/PhysRevLett.95.097802
Turk, J. & Svenšek, D. Backflow-mediated domain switching in nematic liquid crystals. Phys. Rev. E 89, 032508 (2014).
doi: 10.1103/PhysRevE.89.032508
Pishnyak, O., Tang, S., Kelly, J., Shiyanovskii, S. & Lavrentovich, O. Levitation, Lift, and Bidirectional Motion of Colloidal Particles in an Electrically Driven Nematic Liquid Crystal. Phys. Rev. Lett. 99, 127802 (2007).
pubmed: 17930554
doi: 10.1103/PhysRevLett.99.127802
Pishnyak, O. P., Shiyanovskii, S. V. & Lavrentovich, O. D. Inelastic Collisions and Anisotropic Aggregation of Particles in a Nematic Collider Driven by Backflow. Phys. Rev. Lett. 106, 047801 (2011).
pubmed: 21405363
doi: 10.1103/PhysRevLett.106.047801
Lintuvuori, J. S., Stratford, K., Cates, M. E. & Marenduzzo, D. Colloids in Cholesterics: Size-Dependent Defects and Non-Stokesian Microrheology. Phys. Rev. Lett. 105, 178302 (2010).
pubmed: 21231085
doi: 10.1103/PhysRevLett.105.178302
de Andrade Lima, L. & Rey, A. Pulsatile flows of Leslie-Ericksen liquid crystals. J. Non-Newton. Fluid. 135, 32 (2006).
doi: 10.1016/j.jnnfm.2005.12.008
Zou, Z. & Clark, N. Pumping Liquid Crystals. Phys. Rev. Lett. 75, 1799 (1995).
pubmed: 10060394
doi: 10.1103/PhysRevLett.75.1799
Mieda, Y. & Furutani, K. Microsphere Manipulation Using Ferroelectric Liquid Crystals. Phys. Rev. Lett. 95, 177801 (2005).
pubmed: 16383872
doi: 10.1103/PhysRevLett.95.177801
Dierking, I., Cass, P., Syres, K. & Cresswell, R. &Morton, S. Electromigration of microspheres in ferroelectric smectic liquid crystals. Phys. Rev. E 76, 021707 (2007).
doi: 10.1103/PhysRevE.76.021707
Vanbrabant, P. J. M., Beeckman, J., Neyts, K., James, R. & Fernandez, F. A. Effect of material properties on reverse flow in nematic liquid crystal devices with homeotropic alignment. Appl. Phys. Lett. 95, 151108 (2009).
doi: 10.1063/1.3242018
Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3 (1977).
doi: 10.1119/1.10903
Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).
doi: 10.1088/0034-4885/72/9/096601
Migara, L. K. & Song, J.-K. Standing wave-mediated molecular reorientation and spontaneous formation of tunable, concentric defect arrays in liquid crystal cells. NPG Asia Mater 10, e459 (2018).
doi: 10.1038/am.2017.217
Ackerman, P. J., Boyle, T. & Smalyukh, I. I. Squirming motion of baby skyrmions in nematic fluids. Nat. Commun. 8, 431 (2017).
doi: 10.1038/s41467-017-00659-5
de Gennes, P. G. & Prost, J. Physics of Liquid Crystals (Oxford University Press, New York, 1993).
Marenduzzo, D., Orlandini, E., Cates, M. E. & Yeomans, J. M. Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltzmann simulations. Phys. Rev. E 76, 031921 (2007).
doi: 10.1103/PhysRevE.76.031921
Kos, Ž., Ravnik, M. & Žumer, S. Nematodynamics and structures in junctions of cylindrical micropores. Liq. Cryst. 44, 2161–2171 (2017).
Porenta, T., Ravnik, M. & Žumer, S. Complex field-stabilised nematic defect structures in Laguerre-Gaussian optical tweezers. Soft Matter 8, 1865 (2012).
Ravnik, M. et al. Entangled Nematic Colloidal Dimers and Wires. Phys. Rev. Lett. 99, 247801 (2007).
pubmed: 18233489
doi: 10.1103/PhysRevLett.99.247801
Škarabot, M., Osterman, N. & Muševič, I. Optothermally driven colloidal transport in a confined nematic liquid crystal. Soft Matter 13, 2448 (2017).
pubmed: 28277573
doi: 10.1039/C7SM00136C
Beris, A. N. & Edwards, B. J. Thermodynamics of Flowing Systems with Internal Microstructure (Oxford University Press, New York, 1994).
Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of Continuous Media – 2nd ed. (Reed Educatinal and Professional Publishing, 1982).