Divergent Synthesis of Vinyl-, Benzyl-, and Borylsilanes: Aryl to Alkyl 1,5-Palladium Migration/Coupling Sequences.

cross-coupling palladium reaction mechanisms silanes synthetic methods

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
16 04 2020
Historique:
received: 18 11 2019
revised: 19 12 2019
pubmed: 26 1 2020
medline: 26 1 2020
entrez: 26 1 2020
Statut: ppublish

Résumé

Organosilicon compounds have been extensively utilized both in industry and academia. Studies on the syntheses of diverse organosilanes is highly appealing. Through-space metal/hydrogen shifts allow functionalization of C-H bonds at a remote site, which are otherwise difficult to achieve. However, until now, an aryl to alkyl 1,5-palladium migration process seems to have not been presented. Reported herein is the remote olefination, arylation, and borylation of a methyl group on silicon to access diverse vinyl-, benzyl-, and borylsilanes, constituting a unique C(sp

Identifiants

pubmed: 31981459
doi: 10.1002/anie.201914740
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6555-6560

Informations de copyright

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

For recent reviews in the use of organosilicon compounds as the synthetic intermediates, see:
S. E. Denmark, C. S. Regens, Acc. Chem. Res. 2008, 41, 1486-1499;
H. F. Sore, W. R. J. D. Galloway, D. R. Spring, Chem. Soc. Rev. 2012, 41, 1845-1866;
H.-J. Zhang, D. L. Priebbenow, C. Bolm, Chem. Soc. Rev. 2013, 42, 8540-8571;
F. Foubelo, C. Nájera, M. Yus, Chem. Rec. 2016, 16, 2521-2533;
H. F. T. Klare, ACS Catal. 2017, 7, 6999-7002;
T. Komiyama, Y. Minami, T. Hiyama, ACS Catal. 2017, 7, 631-651;
Y. Minami, T. Hiyama, Chem. Eur. J. 2019, 25, 391-399.
 
R. G. Jones, W. Ando, J. Chojnowski, Silicon-Containing Polymers, Kluwer, Dordrecht, 2000;
P. M. Zelisko, Bio-Inspired Silicon-Based Materials, Springer, Dordrecht, 2014;
W. Bains, R. Tacke, Curr. Opin. Drug Discovery Dev. 2003, 6, 526-543;
G. A. Showell, J. S. Mills, Drug Discovery Today 2003, 8, 551-556;
P. Englebienne, A. V. Hoonacker, C. V. Herst, Drug Des. Rev.-Online 2005, 2, 467-483;
N. A. Meanwell, J. Med. Chem. 2011, 54, 2529-2591;
A. K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388-405;
R. Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 3779-3798.
 
W.-X. Zhang, S. Zhang, Z. Xi, Acc. Chem. Res. 2011, 44, 541-551;
G. K. Min, D. Hernández, T. Skrydstrup, Acc. Chem. Res. 2013, 46, 457-470;
L. Li, Y. Zhang, L. Gao, Z. Song, Tetrahedron Lett. 2015, 56, 1466-1473;
Q.-W. Zhang, K. An, W. He, Synlett 2015, 26, 1145-1152;
C. Cheng, J. F. Hartwig, Chem. Rev. 2015, 115, 8946-8975;
Y. Yang, C. Wang, Sci. China Chem. 2015, 58, 1266-1279;
Q.-C. Mua, J. Chen, C.-G. Xia, L.-W. Xu, Coord. Chem. Rev. 2018, 374, 93-113;
J. R. Wilkinson, C. E. Nuyen, T. S. Carpenter, S. R. Harruff, R. V. Hoveln, ACS Catal. 2019, 9, 8961-8979;
B. Zhou, A. Lu, Y. Zhang, Synlett 2019, 30, 685-693;
S. Bähr, W. Xue, M. Oestreich, ACS Catal. 2019, 9, 16-24.
 
Science of Synthesis: Catalytic Transformations via C-H Activation, Vol. 1-2 (Ed.: J.-Q. Yu), Thieme, Stuttgart, 2015;
Sustainable C(sp3)-H Bond Functionalization (Eds.: J. Xie, C. Zhu), Springer, Heidelberg, 2016;
C-H Bond Activation and Catalytic Functionalization I (Eds.: P. H. Dixneuf, H. Doucet), Springer, Cham, 2016.
For reviews on directed C−H activation, see:
T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169;
L. Ackermann, Chem. Rev. 2011, 111, 1315-1345;
J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754-8786;
C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. Farooq Zia, J. Wencel-Delord, T. Besset, B. U. W. Maesa, M. Schnürch, Chem. Soc. Rev. 2018, 47, 6603-6743.
For reviews, see:
S. Ma, Z. Gu, Angew. Chem. Int. Ed. 2005, 44, 7512-7517;
Angew. Chem. 2005, 117, 7680-7685;
F. Shi, R. C. Larock, Top. Curr. Chem. 2009, 292, 123-164;
M. F. Croisant, R. V. Hoveln, J. M. Schomaker, Eur. J. Org. Chem. 2015, 5897-5907.
For examples of 1,n-rhodium migration, see:
T. Hayashi, K. Inoue, N. Taniguchi, M. Ogasawara, J. Am. Chem. Soc. 2001, 123, 9918-9919;
T. Miura, T. Sasaki, H. Nakazawa, M. Murakami, J. Am. Chem. Soc. 2005, 127, 1390-1391;
H. Yamabe, A. Mizuno, H. Kusama, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 3248-3249;
T. Seiser, O. A. Roth, N. Cramer, Angew. Chem. Int. Ed. 2009, 48, 6320-6323;
Angew. Chem. 2009, 121, 6438-6441;
R. Shintani, S. Isobe, M. Takeda, T. Hayashi, Angew. Chem. Int. Ed. 2010, 49, 3795-3798;
Angew. Chem. 2010, 122, 3883-3886;
J. Zhang, J.-F. Liu, A. Ugrinov, A. F. X. Pillai, Z.-M. Sun, P. Zhao, J. Am. Chem. Soc. 2013, 135, 17270-17273;
N. Ishida, Y. Shimamoto, T. Yano, M. Murakami, J. Am. Chem. Soc. 2013, 135, 19103-19106;
R. Shintani, R. Iino, K. Nozaki, J. Am. Chem. Soc. 2014, 136, 7849-7852;
D. J. Burns, D. Best, M. D. Wieczysty, H. W. Lam, Angew. Chem. Int. Ed. 2015, 54, 9958-9962;
Angew. Chem. 2015, 127, 10096-10100;
M. Callingham, B. M. Partridge, W. Lewis, H. W. Lam, Angew. Chem. Int. Ed. 2017, 56, 16352-16356;
Angew. Chem. 2017, 129, 16570-16574;
S.-S. Zhang, T.-J. Hu, M.-Y. Li, Y.-K. Song, X.-D. Yang, C.-G. Feng, G.-Q. Lin, Angew. Chem. Int. Ed. 2019, 58, 3387-3391;
Angew. Chem. 2019, 131, 3425-3429.
For studies on 1,n-migration of other metals, see:
A. L. Keen, M. Doster, S. A. Johnson, J. Am. Chem. Soc. 2007, 129, 810-819;
B.-H. Tan, J. Dong, N. Yoshikai, Angew. Chem. Int. Ed. 2012, 51, 9610-9614;
Angew. Chem. 2012, 124, 9748-9752;
B. Wu, N. Yoshikai, Angew. Chem. Int. Ed. 2013, 52, 10496-10499;
Angew. Chem. 2013, 125, 10690-10693;
B. M. Partridge, J. S. González, H. W. Lam, Angew. Chem. Int. Ed. 2014, 53, 6523-6527;
Angew. Chem. 2014, 126, 6641-6645.
For examples of 1,4-palladium migration, see:
M. A. Campo, R. C. Larock, J. Am. Chem. Soc. 2002, 124, 14326-14327;
M. A. Campo, H. Zhang, T. Yao, A. Ibdah, R. D. McCulla, Q. Huang, J. Zhao, W. S. Jenks, R. C. Larock, J. Am. Chem. Soc. 2007, 129, 6298-6307;
J. Pan, M. Su, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 8647-8651;
Angew. Chem. 2011, 123, 8806-8810;
T. Piou, A. Bunescu, Q. Wang, L. Neuville, J. Zhu, Angew. Chem. Int. Ed. 2013, 52, 12385-12389;
Angew. Chem. 2013, 125, 12611-12615;
T.-J. Hu, G. Zhang, Y.-H. Chen, C.-G. Feng, G.-Q. Lin, J. Am. Chem. Soc. 2016, 138, 2897-2900;
T.-J. Hu, M.-Y. Li, Q. Zhao, C.-G. Feng, G.-Q. Lin, Angew. Chem. Int. Ed. 2018, 57, 5871-5875;
Angew. Chem. 2018, 130, 5973-5977;
R. Rocaboy, I. Anastasiou, O. Baudoin, Angew. Chem. Int. Ed. 2019, 58, 14625-14628;
Angew. Chem. 2019, 131, 14767-14770.
 
C. Bour, J. Suffert, Org. Lett. 2005, 7, 653-656;
A. J. Mota, A. Dedieu, C. Bour, J. Suffert, J. Am. Chem. Soc. 2005, 127, 7171-7182;
Y. Sato, C. Takagi, R. Shintani, K. Nozaki, Angew. Chem. Int. Ed. 2017, 56, 9211-9216;
Angew. Chem. 2017, 129, 9339-9344;
N. Misawa, T. Tsuda, R. Shintani, K. Yamashita, K. Nozaki, Chem. Asian J. 2018, 13, 2566-2572.
 
T. Ohmura, T. Torigoe, M. Suginome, J. Am. Chem. Soc. 2012, 134, 17416-17419;
Y. Liang, W. Geng, J. Wei, K. Ouyang, Z. Xi, Org. Biomol. Chem. 2012, 10, 1537-1542;
T. Ohmura, I. Sasaki, T. Torigoe, M. Suginome, Organometallics 2016, 35, 1601-1603;
L. Mistico, O. Querolle, L. Meerpoel, P. Angibaud, M. Durandetti, J. Maddaluno, Chem. Eur. J. 2016, 22, 9687-9692;
J.-L. Han, Y. Qin, D. Zhao, ACS Catal. 2019, 9, 6020-6026.
 
T. A. Blumenkopf, L. E. Overman, Chem. Rev. 1986, 86, 857-873;
S. E. Denmark, R. F. Sweis, Acc. Chem. Res. 2002, 35, 835-846;
Y. Nakao, T. Hiyama, Chem. Soc. Rev. 2011, 40, 4893-4901.
 
M. Wakioka, Y. Mutoh, R. Takita, F. Ozawa, Bull. Chem. Soc. Jpn. 2009, 82, 1292-1298;
M. A. Brook, C. Henry, Tetrahedron 1996, 52, 861-868;
L. Z. Zhang, Z. J. Hang, Z. Q. Liu, Angew. Chem. Int. Ed. 2016, 55, 236-239;
Angew. Chem. 2016, 128, 244-247;
C. Thiot, C. Mioskowski, A. Wagner, Eur. J. Org. Chem. 2009, 3219-3223;
D. C. Braddock, J. J. P. Peyralans, Tetrahedron 2005, 61, 7233-7240;
M. E. Jung, G. Piizzi, J. Org. Chem. 2002, 67, 3911-3914;
K. Itami, T. Nokami, J. Yoshida, J. Am. Chem. Soc. 2001, 123, 5600-5601.

Auteurs

Jie-Lian Han (JL)

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.

Ying Qin (Y)

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.

Cheng-Wei Ju (CW)

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.

Dongbing Zhao (D)

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.

Classifications MeSH