Treatment of Human Lens Epithelium with High Levels of Nanoceria Leads to Reactive Oxygen Species Mediated Apoptosis.
Adenosine Triphosphate
/ biosynthesis
Apoptosis
/ drug effects
Caspase 3
/ metabolism
Caspase 7
/ metabolism
Cerium
/ toxicity
DNA Damage
Epithelial Cells
/ drug effects
Epithelium
/ drug effects
Ethylene Glycol
/ chemistry
Humans
Lens, Crystalline
/ drug effects
Membrane Potential, Mitochondrial
/ drug effects
Mitochondria
/ drug effects
Mutagens
/ toxicity
Nanoparticles
/ toxicity
Reactive Oxygen Species
/ metabolism
apoptosis
cerium oxide
genotoxicity
mitochondria
reactive oxygen species
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
21 Jan 2020
21 Jan 2020
Historique:
received:
20
12
2019
revised:
16
01
2020
accepted:
16
01
2020
entrez:
25
1
2020
pubmed:
25
1
2020
medline:
6
11
2020
Statut:
epublish
Résumé
Nanoceria (cerium oxide nanoparticles) have been shown to protect human lens epithelial cells (HLECs) from oxidative stress when used at low concentrations. However, there is a lack of understanding about the mechanism of the cytotoxic and genotoxic effects of nanoceria when used at higher concentrations. Here, we investigated the impact of 24-hour exposure to nanoceria in HLECs. Nanoceria's effects on basal reactive oxygen species (ROS), mitochondrial morphology, membrane potential, ATP, genotoxicity, caspase activation and apoptotic hallmarks were investigated. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) studies on isolated mitochondria revealed significant uptake and localization of nanoceria in the mitochondria. At high nanoceria concentrations (400 µg mL
Identifiants
pubmed: 31973133
pii: molecules25030441
doi: 10.3390/molecules25030441
pmc: PMC7036910
pii:
doi:
Substances chimiques
Mutagens
0
Reactive Oxygen Species
0
Cerium
30K4522N6T
ceric oxide
619G5K328Y
Adenosine Triphosphate
8L70Q75FXE
Caspase 3
EC 3.4.22.-
Caspase 7
EC 3.4.22.-
Ethylene Glycol
FC72KVT52F
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Int J Nanomedicine. 2012;7:5577-91
pubmed: 23144561
J Food Drug Anal. 2014 Mar;22(1):64-75
pubmed: 24673904
J Mater Chem B. 2019 Nov 21;7(43):6759-6769
pubmed: 31593203
Chem Commun (Camb). 2007 Mar 14;(10):1056-8
pubmed: 17325804
ACS Nano. 2012 May 22;6(5):3767-75
pubmed: 22524692
FEBS Lett. 1996 Jan 8;378(2):107-10
pubmed: 8549813
Mol Biosyst. 2010 Oct;6(10):1813-20
pubmed: 20697616
ACS Nano. 2016 Feb 23;10(2):2860-70
pubmed: 26844592
ACS Nano. 2010 Sep 28;4(9):5321-31
pubmed: 20690607
J Ophthalmol. 2010;2010:608751
pubmed: 20634936
Int J Mol Sci. 2017 Jan 10;18(1):
pubmed: 28075405
Sci Rep. 2018 Jan 24;8(1):1531
pubmed: 29367754
Environ Sci Nano. 2014 Oct 1;1(5):406-428
pubmed: 25243070
Trends Plant Sci. 2017 Jan;22(1):11-19
pubmed: 27666517
Chem Biol. 2005 Nov;12(11):1227-34
pubmed: 16298302
Chem Commun (Camb). 2010 Apr 28;46(16):2736-8
pubmed: 20369166
Biomed Res Int. 2013;2013:942916
pubmed: 24027766
Pflugers Arch. 2011 Nov;462(5):693-708
pubmed: 21881871
Cardiovasc Res. 2000 Feb;45(3):528-37
pubmed: 10728374
Protein Sci. 2004 Aug;13(8):1979-87
pubmed: 15273300
Nanomedicine. 2012 Apr;8(3):383-90
pubmed: 21722619
Curr Eye Res. 1993 May;12(5):423-31
pubmed: 8344066
Environ Sci Technol. 2008 Jul 1;42(13):5014-9
pubmed: 18678042
Nat Nanotechnol. 2006 Nov;1(2):142-50
pubmed: 18654167
Redox Biol. 2015;4:1-5
pubmed: 25479549
Nanotoxicology. 2015;9(6):696-705
pubmed: 25325158
Artif Cells Nanomed Biotechnol. 2018;46(sup3):S956-S963
pubmed: 30314412
ACS Nano. 2012 Jul 24;6(7):5820-9
pubmed: 22717232
Nature. 2010 Mar 4;464(7285):104-7
pubmed: 20203610
Cell Death Dis. 2018 Jan 25;9(2):119
pubmed: 29371661
Invest Ophthalmol Vis Sci. 1994 Jun;35(7):3094-102
pubmed: 8206728
Cell Death Differ. 2005 Nov;12(11):1390-7
pubmed: 15905877