Onecut-dependent Nkx6.2 transcription factor expression is required for proper formation and activity of spinal locomotor circuits.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 01 2020
Historique:
received: 06 09 2019
accepted: 09 01 2020
entrez: 24 1 2020
pubmed: 24 1 2020
medline: 20 11 2020
Statut: epublish

Résumé

In the developing spinal cord, Onecut transcription factors control the diversification of motor neurons into distinct neuronal subsets by ensuring the maintenance of Isl1 expression during differentiation. However, other genes downstream of the Onecut proteins and involved in motor neuron diversification have remained unidentified. In the present study, we generated conditional mutant embryos carrying specific inactivation of Onecut genes in the developing motor neurons, performed RNA-sequencing to identify factors downstream of Onecut proteins in this neuron population, and employed additional transgenic mouse models to assess the role of one specific Onecut-downstream target, the transcription factor Nkx6.2. Nkx6.2 expression was up-regulated in Onecut-deficient motor neurons, but strongly downregulated in Onecut-deficient V2a interneurons, indicating an opposite regulation of Nkx6.2 by Onecut factors in distinct spinal neuron populations. Nkx6.2-null embryos, neonates and adult mice exhibited alterations of locomotor pattern and spinal locomotor network activity, likely resulting from defective survival of a subset of limb-innervating motor neurons and abnormal migration of V2a interneurons. Taken together, our results indicate that Nkx6.2 regulates the development of spinal neuronal populations and the formation of the spinal locomotor circuits downstream of the Onecut transcription factors.

Identifiants

pubmed: 31969659
doi: 10.1038/s41598-020-57945-4
pii: 10.1038/s41598-020-57945-4
pmc: PMC6976625
doi:

Substances chimiques

Homeodomain Proteins 0
Nkx6-2 protein, mouse 0
Onecut Transcription Factors 0
Transcription Factors 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

996

Subventions

Organisme : NEI NIH HHS
ID : R01 EY029705
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS102678
Pays : United States

Commentaires et corrections

Type : ErratumIn

Références

Lu, D. C., Niu, T. & Alaynick, W. A. Molecular and cellular development of spinal cord locomotor circuitry. Front. Mol. Neurosci. 8, 25, https://doi.org/10.3389/fnmol.2015.00025 (2015).
doi: 10.3389/fnmol.2015.00025 pubmed: 26136656 pmcid: 4468382
Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29, https://doi.org/10.1038/35049541 (2000).
doi: 10.1038/35049541 pubmed: 11262869
Landmesser, L. The distribution of motoneurones supplying chick hind limb muscles. J. Physiol. 284, 371–389 (1978).
doi: 10.1113/jphysiol.1978.sp012545
Landmesser, L. The development of motor projection patterns in the chick hind limb. J. Physiol. 284, 391–414 (1978).
doi: 10.1113/jphysiol.1978.sp012546
Jacquemin, P., Lannoy, V. J., Rousseau, G. G. & Lemaigre, F. P. OC-2, a novel mammalian member of the ONECUT class of homeodomain transcription factors whose function in liver partially overlaps with that of hepatocyte nuclear factor-6. J. Biol. Chem. 274, 2665–2671 (1999).
doi: 10.1074/jbc.274.5.2665
Jacquemin, P. et al. Cloning and embryonic expression pattern of the mouse Onecut transcription factor OC-2. Gene Expr Patterns 3, 639–644, doi:S1567133X03001108 (2003).
Vanhorenbeeck, V., Jacquemin, P., Lemaigre, F. P. & Rousseau, G. G. OC-3, a novel mammalian member of the ONECUT class of transcription factors. Biochem. Biophys. Res. Commun. 292, 848–854, https://doi.org/10.1006/bbrc.2002.6760 (2002).
doi: 10.1006/bbrc.2002.6760 pubmed: 11944891
Landry, C. et al. HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to the cross-regulatory network of liver-enriched transcription factors. Dev. Biol. 192, 247–257, https://doi.org/10.1006/dbio.1997.8757 (1997).
doi: 10.1006/dbio.1997.8757 pubmed: 9441665
Lemaigre, F. P. et al. Hepatocyte nuclear factor 6, a transcription factor that contains a novel type of homeodomain and a single cut domain. Proc. Natl Acad. Sci. USA 93, 9460–9464 (1996).
doi: 10.1073/pnas.93.18.9460
Espana, A. & Clotman, F. Onecut factors control development of the Locus Coeruleus and of the mesencephalic trigeminal nucleus. Mol. Cell Neurosci. 50, 93–102, https://doi.org/10.1016/j.mcn.2012.04.002 (2012).
doi: 10.1016/j.mcn.2012.04.002 pubmed: 22534286
Roy, A. et al. Onecut transcription factors act upstream of Isl1 to regulate spinal motoneuron diversification. Dev. 139, 3109–3119, https://doi.org/10.1242/dev.078501 (2012).
doi: 10.1242/dev.078501
Kabayiza, K. U. et al. The Onecut Transcription Factors Regulate Differentiation and Distribution of Dorsal Interneurons during Spinal Cord Development. Front. Mol. Neurosci. 10, 157, https://doi.org/10.3389/fnmol.2017.00157 (2017).
doi: 10.3389/fnmol.2017.00157 pubmed: 28603487 pmcid: 5445119
Harris, A. et al. Onecut Factors and Pou2f2 Regulate the Distribution of V2 Interneurons in the Mouse Developing Spinal Cord. Front. Cell Neurosci. 13, 184, https://doi.org/10.3389/fncel.2019.00184 (2019).
doi: 10.3389/fncel.2019.00184 pubmed: 31231191 pmcid: 6561314
Audouard, E. et al. The Onecut transcription factor HNF-6 contributes to proper reorganization of Purkinje cells during postnatal cerebellum development. Mol. Cell Neurosci. 56, 159–168, https://doi.org/10.1016/j.mcn.2013.05.001 (2013).
doi: 10.1016/j.mcn.2013.05.001 pubmed: 23669529
Espana, A. & Clotman, F. Onecut transcription factors are required for the second phase of development of the A13 dopaminergic nucleus in the mouse. J. Comp. Neurol. 520, 1424–1441, https://doi.org/10.1002/cne.22803 (2012).
doi: 10.1002/cne.22803 pubmed: 22102297
Stam, F. J. et al. Renshaw cell interneuron specialization is controlled by a temporally restricted transcription factor program. Dev. 139, 179–190, https://doi.org/10.1242/dev.071134 (2012).
doi: 10.1242/dev.071134
Audouard, E. et al. The Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions. PLoS One 7, e50509, https://doi.org/10.1371/journal.pone.0050509 (2012).
doi: 10.1371/journal.pone.0050509 pubmed: 23227180 pmcid: 3515622
Francius, C. & Clotman, F. Dynamic expression of the Onecut transcription factors HNF-6, OC-2 and OC-3 during spinal motor neuron development. Neurosci. 165, 116–129, https://doi.org/10.1016/j.neuroscience.2009.09.076 (2010).
doi: 10.1016/j.neuroscience.2009.09.076
Rhee, H. S. et al. Expression of Terminal Effector Genes in Mammalian Neurons Is Maintained by a Dynamic Relay of Transient Enhancers. Neuron 92, 1252–1265, https://doi.org/10.1016/j.neuron.2016.11.037 (2016).
doi: 10.1016/j.neuron.2016.11.037 pubmed: 27939581 pmcid: 5193225
Velasco, S. et al. A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells. Cell Stem Cell 20, 205–217 e208, https://doi.org/10.1016/j.stem.2016.11.006 (2017).
doi: 10.1016/j.stem.2016.11.006 pubmed: 27939218
Wilzen, A. et al. The Phox2 pathway is differentially expressed in neuroblastoma tumors, but no mutations were found in the candidate tumor suppressor gene PHOX2A. Int. J. Oncol. 34, 697–705 (2009).
pubmed: 19212675
Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717-720, doi:nature06347 (2007).
Southwood, C. et al. CNS myelin paranodes require Nkx6-2 homeoprotein transcriptional activity for normal structure. J Neurosci 24, 11215-11225, doi:24/50/11215 (2004).
Clotman, F. et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes. Dev. 19, 1849–1854, https://doi.org/10.1101/gad.340305 (2005).
doi: 10.1101/gad.340305 pubmed: 16103213 pmcid: 1186184
Palmesino, E. et al. Foxp1 and lhx1 coordinate motor neuron migration with axon trajectory choice by gating Reelin signalling. PLoS Biol. 8, e1000446, https://doi.org/10.1371/journal.pbio.1000446 (2010).
doi: 10.1371/journal.pbio.1000446 pubmed: 20711475 pmcid: 2919418
Wang, W. et al. Sinomenine Attenuates Angiotensin II-Induced Autophagy via Inhibition of P47-Phox Translocation to the Membrane and Influences Reactive Oxygen Species Generation in Podocytes. Kidney Blood Press. Res. 41, 158–167, https://doi.org/10.1159/000443417 (2016).
doi: 10.1159/000443417 pubmed: 26919366
Di Bonito, M. et al. Loss of Projections, Functional Compensation, and Residual Deficits in the Mammalian Vestibulospinal System of Hoxb1-Deficient Mice. eNeuro 2, doi:10.1523/ENEURO.0096-15.2015 (2015).
Zuchner, M., Kondratskaya, E., Sylte, C. B., Glover, J. C. & Boulland, J. L. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury. J. Physiol. 596, 281–303, https://doi.org/10.1113/JP274484 (2018).
doi: 10.1113/JP274484 pubmed: 29086918
Kondratskaya, E. et al. Locomotor central pattern generator excitability states and serotonin sensitivity after spontaneous recovery from a neonatal lumbar spinal cord injury. Brain Res 1708, 10–19, doi:S0006-8993(18)30611-5 (2019).
Kjaerulff, O. & Kiehn, O. Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J. Neurosci. 16, 5777–5794 (1996).
doi: 10.1523/JNEUROSCI.16-18-05777.1996
Whelan, P., Bonnot, A. & O'Donovan, M. J. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J. Neurophysiol. 84, 2821–2833, https://doi.org/10.1152/jn.2000.84.6.2821 (2000).
doi: 10.1152/jn.2000.84.6.2821 pubmed: 11110812
Hinckley, C. A., Hartley, R., Wu, L., Todd, A. & Ziskind-Conhaim, L. Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord. J Neurophysiol 93, 1439–1449, doi:00647.2004 (2005).
Jiang, Z., Carlin, K. P. & Brownstone, R. M. An in vitro functionally mature mouse spinal cord preparation for the study of spinal motor networks. Brain Res 816, 493–499, doi:S0006-8993(98)01199-8 (1999).
Chen, J. A. et al. Mir-17-3p controls spinal neural progenitor patterning by regulating Olig2/Irx3 cross-repressive loop. Neuron 69, 721–735, doi:S0896-6273(11)00062-6 (2011).
Vallstedt, A. et al. Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron 31, 743–755, doi:S0896-6273(01)00412-3 (2001).
Sander, M. et al. Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates. Genes. Dev. 14, 2134–2139 (2000).
doi: 10.1101/gad.820400
Cai, J. et al. Expression and regulation of the chicken Nkx-6.2 homeobox gene suggest its possible involvement in the ventral neural patterning and cell fate specification. Dev Dyn 216, 459-468, doi:10.1002/(SICI)1097-0177(199912)216:4/5<459::AID-DVDY14>3.0.CO;2-7 (1999).
De Marco Garcia, N. V. & Jessell, T. M. Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in Nkx6.1 activity. Neuron 57, 217–231, doi:S0896-6273(07)01023-9 (2008).
Sockanathan, S. & Jessell, T. M. Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Cell 94, 503–514, doi:S0092-8674(00)81591-3 (1998).
Sockanathan, S., Perlmann, T. & Jessell, T. M. Retinoid receptor signaling in postmitotic motor neurons regulates rostrocaudal positional identity and axonal projection pattern. Neuron 40, 97-111, doi:S0896627303005324 (2003).
Gow, A., Friedrich, V. L. Jr. & Lazzarini, R. A. Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression. J. Cell Biol. 119, 605–616, https://doi.org/10.1083/jcb.119.3.605 (1992).
doi: 10.1083/jcb.119.3.605 pubmed: 1383235
Ribeiro, A. F. Jr. et al. Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies. Sci. Rep. 9, 11842, https://doi.org/10.1038/s41598-019-48156-7 (2019).
doi: 10.1038/s41598-019-48156-7 pubmed: 31413358 pmcid: 6694188
Cai, J. et al. Mice lacking the Nkx6.2 (Gtx) homeodomain transcription factor develop and reproduce normally. Mol. Cell Biol. 21, 4399–4403, https://doi.org/10.1128/MCB.21.13.4399-4403.2001 (2001).
doi: 10.1128/MCB.21.13.4399-4403.2001 pubmed: 11390667 pmcid: 87099
Lin, J. H. et al. Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell 95, 393–407, doi:S0092-8674(00)81770-5 (1998).
Clotman, F. et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Dev. 129, 1819–1828 (2002).
Jacquemin, P. et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol. Cell Biol. 20, 4445–4454 (2000).
doi: 10.1128/MCB.20.12.4445-4454.2000
Jacquemin, P., Lemaigre, F. P. & Rousseau, G. G. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev Biol 258, 105–116, doi:S0012160603001155 (2003).
Lannoy, V. J., Rodolosse, A., Pierreux, C. E., Rousseau, G. G. & Lemaigre, F. P. Transcriptional stimulation by hepatocyte nuclear factor-6. Target-specific recruitment of either CREB-binding protein (CBP) or p300/CBP-associated factor (p/CAF). J. Biol. Chem. 275, 22098–22103, https://doi.org/10.1074/jbc.M000855200 (2000).
doi: 10.1074/jbc.M000855200 pubmed: 10811635
Laudadio, I. et al. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation. Gastroenterology 142, 119–129, https://doi.org/10.1053/j.gastro.2011.09.001 (2012).
doi: 10.1053/j.gastro.2011.09.001 pubmed: 21920465
Beaudry, J. B. et al. Threshold levels of hepatocyte nuclear factor 6 (HNF-6) acting in synergy with HNF-4 and PGC-1alpha are required for time-specific gene expression during liver development. Mol Cell Biol 26, 6037–6046, doi:26/16/6037 (2006).
Toch, M. & Clotman, F. CBP and p300 coactivators contribute to the maintenance of Isl1 expression by the Onecut transcription factors in embryonic spinal motor neurons. Mol. Cell Neurosci. 101, 103411, https://doi.org/10.1016/j.mcn.2019.103411 (2019).
doi: 10.1016/j.mcn.2019.103411 pubmed: 31648029
Chelban, V. et al. Mutations in NKX6-2 Cause Progressive Spastic Ataxia and Hypomyelination. Am J Hum Genet 100, 969–977, doi:S0002-9297(17)30196-9 (2017).
Chelban, V., Kaya, N., Alkuraya, F. & Houlden, H. NKX6-2-Related Disorder. doi:NBK531509 [bookaccession] (1993).
Crone, S. A. et al. Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60, 70–83, doi:S0896-6273(08)00677-6 (2008).
Talpalar, A. E. et al. Dual-mode operation of neuronal networks involved in left-right alternation. Nat. 500, 85–88, https://doi.org/10.1038/nature12286 (2013).
doi: 10.1038/nature12286
Lorente De, N. R. Anatomy of the eighth nerve. Cent. projection nerve End. Intern. ear. Laryngoscope 43, 1–38 (1933).

Auteurs

Mathilde Toch (M)

Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium.

Audrey Harris (A)

Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium.

Olivier Schakman (O)

Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, Brussels, Belgium.

Elena Kondratskaya (E)

Laboratory for Neural Development and Optical Recording (NDEVOR), Section for Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Jean-Luc Boulland (JL)

Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway.

Nicolas Dauguet (N)

Université catholique de Louvain, de Duve Institute, Flow cytometry and cell sorting facility (CYTF), Brussels, Belgium.

Stéphanie Debrulle (S)

Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium.

Charlotte Baudouin (C)

Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium.

Maria Hidalgo-Figueroa (M)

Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium.
CIBER de Salud Mental (CIBERSAM), Madrid, Spain.
University of Cadiz, Cadiz, Spain.

Xiuqian Mu (X)

Department of Ophthalmology/Ross Eye Institute, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, 14203, USA.

Alexander Gow (A)

Wayne state University, Center for Molecular Medicine and Genetics, Carman and Ann Adams Department of Pediatrics, Department of Neurology, Detroit, Michigan, USA.

Joel C Glover (JC)

Laboratory for Neural Development and Optical Recording (NDEVOR), Section for Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway.

Fadel Tissir (F)

Université catholique de Louvain, Institute of Neuroscience, Laboratory of Developmental Neurobiology, Brussels, Belgium.

Frédéric Clotman (F)

Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium. frederic.clotman@uclouvain.be.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH