p67


Journal

Journal of leukocyte biology
ISSN: 1938-3673
Titre abrégé: J Leukoc Biol
Pays: England
ID NLM: 8405628

Informations de publication

Date de publication:
03 2020
Historique:
received: 08 11 2019
revised: 16 12 2019
accepted: 07 01 2020
pubmed: 23 1 2020
medline: 14 8 2020
entrez: 23 1 2020
Statut: ppublish

Résumé

Activation of the phagocyte NADPH oxidase involves a conformational change in Nox2. The effector in this process is p67

Identifiants

pubmed: 31965617
doi: 10.1002/JLB.4A1219-607R
doi:

Substances chimiques

Peptides 0
Phosphoproteins 0
Recombinant Fusion Proteins 0
neutrophil cytosol factor 67K 0
NADPH Oxidase 2 EC 1.6.3.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

509-528

Informations de copyright

©2020 Society for Leukocyte Biology.

Références

Nauseef WM. The phagocyte NOX2 NADPH oxidase in microbial killing and signaling. Curr Opin Immunol. 2019;60:130-140.
Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol. 2004;122:277-291.
Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J. 2005;386:401-416.
Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008;275:3249-3277.
Heyworth PG, Curnutte JT, Nauseef WM, et al. Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47phox and p67phox requires interaction between p47phox and cytochrome b558. J Clin Invest. 1991;87:352-356.
Dang PM-C, Cross AR, Babior BM. Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67phox and cytochrome b558. Proc Natl Acad Sci USA. 2001;98:3001-3005.
Kao Y-Y, Gianni D, Bohl B, Taylor RM, Bokoch GM. Identification of a conserved Rac-binding site on NADPH oxidases supports a direct GTPase regulatory mechanism. J Biol Chem. 2008;283:12736-12746.
Pick E. Cell-Ffee NADPH oxidase activation assays: a triumph of reductionism. In Quinn MT and DeLeo FR, eds. Neutrophil: Methods and Protocols. 3rd ed. New York, NY: Springer Science+Business Media; 2020:325-411.
Freeman JL, Lambeth JD. NADPH oxidase activity is independent of p47phox in vitro. J Biol Chem. 1996;271:22578-22582.
Koshkin V, Lotan O, Pick E. The cytosolic component p47phox is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J Biol Chem. 1996;271:30326-30329.
Kreck ML, Freeman JL, Abo A, Lambeth JD. Membrane association of Rac is required for high activity of the respiratory burst oxidase. Biochemistry. 1996;35:15683-15692.
Dieckmann D, Abo A, Johnston C, Segal AW, Hal A. Interaction of Rac with p67phox and regulation of NADPH oxidase activity. Science. 1994;254:531-533.
Paclet M-H, Coleman AW, Vergnaud S, Morel F. p67phox-mediated NADPH oxidase assembly: imaging of cytochrome b558 liposomes by atomic force microscopy. Biochemistry. 2000;39:9302-9310.
Gorzalczany Y, Sigal N, Itan M, Lotan O, Pick E. Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly. J Biol Chem. 2000;275:40073-40081.
Sigal N, Gorzalczany Y, Pick E. Two pathways of activation of the superoxide-generating NADPH oxidase of phagocytes in vitro-distinctive effects of inhibitors. Inflammation. 2003;27:147-159.
Alloul N, Gorzalczany Y, Itan M, Sigal N, Pick E. Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67phox and the small GTPase Rac1. Biochemistry. 2001;40:14557-14566.
Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox. Conversion of a pagan NADPH oxidase to monotheism. J Biol Chem. 2002;277:18605-18610.
Sarfstein R, Gorzalczany Y, Mizrahi A, et al. Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox. J Biol Chem. 2004;279:16007-16016.
Mizrahi A, Berdichevsky Y, Ugolev Y, et al. Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships. J Leukoc Biol. 2006;79:881-895.
Kwong CH, Adams AG, Leto TL. Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. J Biol Chem. 1995;270:19868-19872.
Lapouge K, Smith SM, Walker PA, et al. Structure of the TPR domain of p67phox in complex with Rac-GTP. Molec Cell. 2000;6:899-907.
Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:255-313.
Matono R, Miyano K, Kiyohara T, Sumimoto H. Arachidonic acid induces direct interaction of the p67phox-Rac complex with the phagocyte oxidase Nox2 leading to superoxide production. J Biol Chem. 2014;289:24874-24884.
Dang PM-C, Cross A R, Quinn MT, Babior BM. Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67phox and cytochrome b558 II. Proc Natl Acad Sci USA. 2002;99:4262-4265.
Han C-H, Freeman JLR, Lee TH, Motalebi SA, Lambeth JD. Regulation of the neutrophil respiratory burst oxidase-identification of an activation domain in p67phox. J Biol Chem. 1998;273:16663-16668.
Nisimoto Y, Motalebi S, Ha C-H, Lambeth JD. The p67phox activation domain regulates electron flow from NADPH to flavin in flavocytochrome b558. J Biol Chem. 1999;274:22999-23005.
Mizrahi A, Berdichevsky Y, Casey PJ, Pick E. A prenylated p47phox-p67phox-Rac1 chimera is a quintessential NADPH oxidase activator. Membrane association and functional capacity. J Biol Chem. 2010;285:25485-25499.
Bechor E, Dahan I, Fradin T, et al. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox. Front Chem. 2015;3:3.
Berdichevsky Y, Mizrahi A, Ugolev Y, Molshanski-Mor S, Pick E. Tripartite chimeras comprising functional domains derived from the three cytosolic components p47phox, p67phox and Rac1 elicit activator-independent superoxide production by phagocyte membranes. Role of membrane lipid charge and of specific residues in the chimeras. J Biol Chem. 2007;282:22122-22139.
Green MR, Sambrook J. Molecular Cloning-A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2012.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1986;72:248-254.
Morozov I, Lotan O, Joseph G, Gorzalczany Y, Pick E. Mapping of functional domains in p47phox involved in the activation of NADPH oxidase by “peptide walking.” J Biol Chem. 1998;273:53435-15444.
Dahan I, Issaeva I, Gorzalczany Y, Sigal N, Hirschberg M, Pick E. Mapping of functional domains in the p22phox subunit of flavocytochrome b559 participating in the assembly of the NADPH oxidase complex by “peptide walking.” J Biol Chem. 2002;277:8421-8432.
Dahan I, Smith SME, Pick E. A Cys-Gly-Cys triad in the dehydrogenase region of Nox2 plays a key role in the interaction with p67phox. J Leukoc Biol. 2015;98:859-874.
Fradin T, Bechor E, Berdichevsky Y, Dahan I, Pick E. Binding of p67phox to Nox2 is stabilized by disulfide bonds between cysteines in the 369Cys-Gly-Cys371 triad in Nox2 and in p67phox. J Leukoc Biol. 2018;104:1023-1039.
Pick E. Using synthetic peptides for exploring protein-protein interactions in the assembly of the NADPH oxidase complex. In: Knaus UG and Leto TL, eds. NADPH Oxidases: Methods and Protocols. New York, NY: Springer Science+Business Media; 2019:377-415.
Joseph G, Gorzalczany Y, Koshkin V, Pick E. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxy-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif. J Biol Chem. 1994;269:29024-29031.
Joseph G, Pick E. “Peptide walking” is a novel method of mapping functional domains in proteins. Its application to the Rac1-dependent activation of NADPH oxidase. J Biol Chem. 1995;270:29079-29082.
Dahan I, Molshanski-Mor S, Pick E. Inhibition of NADPH oxidase activation by peptides mapping within the dehydrogenase region of Nox2-a “peptide walking” study. J Leukoc Biol. 2012;91:501-515.
Dahan I, Pick E. Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or “All that you did and did not want to know about Nox inhibitory peptides.” Cell Mol Life Sci. 2012;69:2283-2305.
de Mendez I, Garrett MC, Adams AG, Leto TL. Role of p67phox SH3 domains in assembly of the NADPH oxidase system. J Biol Chem. 1994;269:16326-16332.
Maehara Y, Miyano K, Sumimoto H. Role for the first SH3 domain of p67phox in activation of superoxide-producing NADPH oxidases. Biochem Biophys Res Commun. 2009;379:589-593.
Takeya R, Ueno N, Kami K, et al. Novel human homologous of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem. 2003;278:25234-25246.
Takemoto D, Tanaka A, Scott B. A p67phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell. 2006;18:2807-2821.
Grizot S, Fieschi F, Dagher M-C, Pebay-Peyroula E. The active N-terminal region of p67phox: structure at 1.8 Å resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem. 2001;276:21627-21631.
Maehara Y, Miyano K, Yuzawa S, Akimoto R, Takeya R, Sumimoto H. A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase. J Biol Chem. 2010;285:31435-31445.
Pick E. When charge is in charge-“Millikan” for leukocyte biologists. J Leukoc Biol. 2010;87:537-540.
Kawahara T, Quinn MT, Lambeth JD. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evolutionary Biology. 2007;7:109.
Sigal N, Gorzalczany Y, Sarfstein R, Weinbaum C, Zheng Y, Pick E. The guanine nucleotide exchange factor Trio activates the phagocyte NADPH oxidase in the absence of GDP to GTP exchange-“the emperor's new clothes.” J Biol Chem. 2003;278:4854-4861.
London N, Movshovitz-Attias D, Schueler-Furman O. The structural basis of peptide-protein binding strategies. Structure. 2010;18:188-199.
Katz C, Levy-Beladev L, Rotem-Bamberger RitoT, Rüdiger SGD, Friedler A. Studying protein-protein interactions using peptide arrays. Chem Soc Rev. 2011;40:2131-2145.
Yuzawa S, Miyano K, Honbou K, Inagaki F, Sumimoto H. The domain organization of p67phox, a protein required for activation of the superoxide-producing NADPH oxidase in phagocytes. J Innate Immun. 2009;1:543-555.
Durand D, Vivès C, Cannella D, et al. NADPH oxidase activator p67phox behaves in solution as a multidomain protein with semi-flexible linkers. J Struct Biol. 2010;169:45-53.
Leto TL, Adams AG, de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Sec homology 3 domains to proline-rich targets. Proc Natl Acad Sci USA. 1994;91:10650-10654.
Sumimoto H, Kage Y, Nunoi H, et al. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci USA. 1994;91:5345-5349.
Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell. 2003;113:343-355.
Marcoux J, Man P, Petit-Hartlein I, Vives C, Forest E, Fieschi F. p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex. J Biol Chem. 2010;285:28980-28990.
Autore F, Pagano B, Fornili A, Rittinger K, Fraternali F. In silico phosphorylation of the autoinhibited form of p47phox: insights into the mechanism of activation. Biophys J. 2010;99:3716-3725.
Hata K, Ito T, Takeshige K, Sumimoto H. Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C-terminally truncated forms. Implications for regulatory Src homology 3 domain-mediated interactions. J Biol Chem. 1998;273:4232-4236.
Dang PM-C, Morel F, Gougerot-Pocidalo M-A, El Benna J. Phosphorylation of the NADPH oxidase component p67phox by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Biochemistry. 2003;42:4520-4526.
Dang PM-C, Raad H, Derkawi RA, et al. The NADPH oxidase cytosolic component p67phox is constitutively phosphorylated in human neutrophils : regulation by a protein tyrosine kinase, MEK1/2 and phosphatases 1/2A. Biochem Pharmacol. 2011;82:1145-1152.
de Mendez I, Adams AG, Sokolic RA, Malech HL, Leto TL. Multiple SH3 domain interactions regulate NADPH oxidase assembly in whole cells. EMBO J. 1996;15:1211-1220.
Leto TL. The respiratory burst oxidase. In: Gallin JI and Snyderman R, eds. Inflammation, Basic Principles and Clinical Correlates. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 1999:769-786.
Valente AJ, El Jamali A, Epperson TK, Gamez MJ, Pearson DW, Clark RA. NOX1 NADPH oxidase regulation by the NOXA1 SH3 domain. Free Rad Biol Med. 2007;43:384-396.
Kawano M, Ishii R, Yoshioka Y, Fukuda T, Tamura M. C-terminal truncation of NoxA1 greatly enhances its ability to activate Nox2 in a pure reconstitution system. Arch Biochem Biophys. 2013;538:164-170.

Auteurs

Edna Bechor (E)

The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Anat Zahavi (A)

The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Maya Amichay (M)

The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Tanya Fradin (T)

The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Aya Federman (A)

The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Yevgeny Berdichevsky (Y)

The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Edgar Pick (E)

The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Animals Huntington Disease Mitochondria Neurons Mice

Classifications MeSH