Development of a cognitive function marker based on D-amino acid proportions using new chiral tandem LC-MS/MS systems.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
21 01 2020
21 01 2020
Historique:
received:
09
10
2019
accepted:
27
12
2019
entrez:
23
1
2020
pubmed:
23
1
2020
medline:
15
12
2020
Statut:
epublish
Résumé
The incidence of dementia, a clinical symptom characterized by severe cognitive decline, is increasing worldwide. Predictive biomarkers are therefore required for early identification and management. D-amino acids in the brain contribute to cognitive function and are suggested as useful biomarkers for diagnosing dementia risk. To clarify their relationship with human cognitive decline, we developed an identification method of chiral metabolomics for detecting slight differences in chiral amino acid amounts. Chiral tandem liquid chromatography-tandem mass spectrometry systems were applied for sensitive and selective amino acid species along with chiral species determination based on anion and zwitterion exchange mechanisms. In a comprehensive health cohort (cross-sectional study), we measured blood chiral amino acid levels from 305 women (65-80 years old) classified into Control, Mild-cognitive-Impairment (MCI), and Dementia groups using the Mini-Mental State Examination. MCI exhibited higher D-Pro (D-Pro/(D-Pro + L-Pro)) proportion vs the Control group, suggesting this proportion as a useful biomarker for MCI. Biomarker accuracy was improved in combination with D-Ser proportion. Receiver operating characteristics analysis of the Control vs. MCI proportion obtained area under the curve (0.80) with 70% sensitivity and 84% specificity at the optimal cutoff value (0.30). Thus, dementia monitoring can be improved by including trace D-amino acids measurements.
Identifiants
pubmed: 31965028
doi: 10.1038/s41598-020-57878-y
pii: 10.1038/s41598-020-57878-y
pmc: PMC6972825
doi:
Substances chimiques
Amino Acids
0
Biomarkers
0
Types de publication
Evaluation Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
804Références
Paraskevaidi, M., Martin-Hirsch, P. L. & Martin, F. L. Progress and Challenges in the Diagnosis of Dementia: A Critical Review. ACS Chem. Neurosci. 9, 446–461 (2018).
doi: 10.1021/acschemneuro.8b00007
Bruscoli, M. & Lovestone, S. Is MCI really just early dementia? A systematic review of conversion studies. Int. Psychogeriatr. 16, 129–140 (2004).
doi: 10.1017/S1041610204000092
Manly, J. J. et al. Frequency and course of mild cognitive impairment in a multiethnic community. Ann. Neurol. 63, 494–506 (2008).
doi: 10.1002/ana.21326
Ullah, N., Muhammad, N. & Ullah, W. Alzheimer’ s disease, Epidemiology, causes, diagnosis and novel treatments: A review. 5, 50–56 (2015).
Uchida, K. et al. Amyloid-β sequester proteins as blood-based biomarkers of cognitive decline. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. 1, 270–280 (2015).
Hurtado, M. O., Kohler, I. & de Lange, E. C. Next-generation biomarker discovery in Alzheimer’s disease using metabolomics – from animal to human studies. Bioanal. 10, 1525–1546 (2018).
doi: 10.4155/bio-2018-0135
Zetterberg, H. Blood-based biomarkers for Alzheimer’s disease—An update. J. Neurosci. Methods, https://doi.org/10.1016/J.JNEUMETH.2018.10.025 (2018).
doi: 10.1016/j.jneumeth.2018.10.025
Nakamura, A. et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nat. 554, 249–254 (2018).
doi: 10.1038/nature25456
Liu, S. et al. Serum levels of proteins involved in amyloid-β clearance are related to cognitive decline and neuroimaging changes in mild cognitive impairment. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. 11, 85–97 (2019).
Imanishi, N. et al. Glycolytic flux controls d-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes. Proc. Natl. Acad. Sci. 112, E2217–E2224 (2015).
doi: 10.1073/pnas.1416117112
Reis, T. et al. d-serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl. Psychiatry 5, e561–e561 (2015).
doi: 10.1038/tp.2015.52
Nakade, Y. et al. Gut microbiota-derived D-serine protects against acute kidney injury. JCI insight 3 (2018).
Ishiwata, S. et al. Cerebrospinal fluid D-serine concentrations in major depressive disorder negatively correlate with depression severity. J. Affect. Disord. 226, 155–162 (2018).
doi: 10.1016/j.jad.2017.09.035
Ariyoshi, M. et al. D-Glutamate is metabolized in the heart mitochondria. Sci. Rep. 7, 43911 (2017).
doi: 10.1038/srep43911
Tochio, N., Murata, T. & Utsunomiya-Tate, N. Effect of site-specific amino acid D-isomerization on β-sheet transition and fibril formation profiles of Tau microtubule-binding repeat peptides. Biochem. Biophys. Res. Commun. 508, 184–190 (2019).
doi: 10.1016/j.bbrc.2018.11.043
Lee, R. J. et al. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci. Signal. 10, eaam7703 (2017).
doi: 10.1126/scisignal.aam7703
Miyoshi, Y. et al. HPLC analysis of naturally occurring free d-amino acids in mammals. J. Pharm. Biomed. Anal. 69, 42–49 (2012).
doi: 10.1016/j.jpba.2012.01.041
Ishii, C., Akita, T., Mita, M., Ide, T. & Hamase, K. Development of an online two-dimensional high-performance liquid chromatographic system in combination with tandem mass spectrometric detection for enantiomeric analysis of free amino acids in human physiological fluid. J. Chromatogr. A 1570, 91–98 (2018).
doi: 10.1016/j.chroma.2018.07.076
Matsumoto, M. et al. Free D-amino acids produced by commensal bacteria in the colonic lumen. Sci. Rep. 8, 17915 (2018).
doi: 10.1038/s41598-018-36244-z
Lee, S., Kim, S.-J., Bang, E. & Na, Y.-C. Chiral separation of intact amino acids by capillary electrophoresis-mass spectrometry employing a partial filling technique with a crown ether carboxylic acid. J. Chromatogr. A 1586, 128–138 (2019).
doi: 10.1016/j.chroma.2018.12.001
Karakawa, S. et al. Simultaneous analysis of d-alanine, d-aspartic acid, and d-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues. J. Pharm. Biomed. Anal. 115, 123–129 (2015).
doi: 10.1016/j.jpba.2015.05.024
Ilisz, I., Bajtai, A., Lindner, W. & Péter, A. Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. J. Pharm. Biomed. Anal. 159, 127–152 (2018).
doi: 10.1016/j.jpba.2018.06.045
Armstrong, D. W., Gasper, M., Lee, S. H., Zukowski, J. & Ercal, N. D-amino acid levels in human physiological fluids. Chirality 5, 375–378 (1993).
doi: 10.1002/chir.530050519
Brückner, H. & Schieber, A. Determination of amino acid enantiomers in human urine and blood serum by gas chromatography-mass spectrometry. Biomed. Chromatogr. 15, 166–172 (2001).
doi: 10.1002/bmc.57
Visser, W. F. et al. A sensitive and simple ultra-high-performance-liquid chromatography–tandem mass spectrometry based method for the quantification of d-amino acids in body fluids. J. Chromatogr. A 1218, 7130–7136 (2011).
doi: 10.1016/j.chroma.2011.07.087
Kimura, T. et al. Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Sci. Rep. 6, 26137 (2016).
doi: 10.1038/srep26137
Xing, Y., Li, X., Guo, X. & Cui, Y. Simultaneous determination of 18 d-amino acids in rat plasma by an ultrahigh-performance liquid chromatography-tandem mass spectrometry method: Application to explore the potential relationship between Alzheimer’s disease and d-amino acid level alteration. Anal. Bioanal. Chem. 408, 141–150 (2016).
doi: 10.1007/s00216-015-9086-3
Li, Z., Xing, Y., Guo, X. & Cui, Y. Development of an UPLC–MS/MS method for simultaneous quantitation of 11 D-amino acids in different regions of rat brain: Application to a study on the associations of D-amino acid concentration changes and Alzheimer’s disease. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1058, 40–46 (2017).
doi: 10.1016/j.jchromb.2017.05.011
Hashimoto, K. et al. Possible role of d-serine in the pathophysiology of Alzheimer’s disease. Prog. Neuro-psychopharmacol. Biol. Psychiatry 28, 385–388 (2004).
doi: 10.1016/j.pnpbp.2003.11.009
Fujii, N., Kaji, Y. & Fujii, N. d-Amino acids in aged proteins: Analysis and biological relevance. J. Chromatogr. B 879, 3141–3147 (2011).
doi: 10.1016/j.jchromb.2011.05.051
Hutchinson, W. L. et al. Molecular dissection of Alzheimer’s disease neuropathology by depletion of serum amyloid P component. Proc. Natl. Acad. Sci. 106, 7619–7623 (2009).
doi: 10.1073/pnas.0902640106
Xu, R. & Wang, Q. Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst. Biol. 10, 63 (2016).
doi: 10.1186/s12918-016-0307-y
Nagata, Y. et al. The presence of high concentrations of free d-amino acids in human saliva. Life Sci. 78, 1677–1681 (2006).
doi: 10.1016/j.lfs.2005.08.009
Murtas, G., Sacchi, S., Valentino, M. & Pollegioni, L. Biochemical Properties of Human D-Amino Acid Oxidase. Front. Mol. Biosci. 4, 88 (2017).
doi: 10.3389/fmolb.2017.00088
Lin, C.-H., Yang, H.-T., Chiu, C.-C. & Lane, H.-Y. Blood levels of D-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. Sci. Rep. 7, 14849 (2017).
doi: 10.1038/s41598-017-13951-7
Kim, M. et al. Association Between Serum β2-Microglobulin Levels and Prevalent and Incident Physical Frailty in Community-Dwelling Older Women. J. Am. Geriatr. Soc. 65, e83–e88 (2017).
doi: 10.1111/jgs.14733
Folstein, M. F., Folstein, S. E. & McHugh, P. R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).
doi: 10.1016/0022-3956(75)90026-6
Akobeng, A. K. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 96, 644–647 (2007).
doi: 10.1111/j.1651-2227.2006.00178.x