A simple protocol for the isolation of proteorhodopsins of the dinoflagellate Oxyrrhis marina.
ESTs
MS analysis
Oxyrrhis marina
dinoflagellates
proteorhodopsin
Journal
Journal of basic microbiology
ISSN: 1521-4028
Titre abrégé: J Basic Microbiol
Pays: Germany
ID NLM: 8503885
Informations de publication
Date de publication:
Apr 2020
Apr 2020
Historique:
received:
01
11
2019
revised:
19
12
2019
accepted:
07
01
2020
pubmed:
22
1
2020
medline:
9
10
2020
entrez:
22
1
2020
Statut:
ppublish
Résumé
For the first time, native proteorhodopsins of the marine dinoflagellate Oxyrrhis marina were isolated. Total cell membrane fractions were minced in a bead beater and solubilized with the detergent Triton X-100. Subsequent sucrose density gradient centrifugation resulted in three or four red-colored bands. Nonsolubilized, but still red colored, membranes sedimented at the bottom. For each of these bands, absorbance maxima were registered at approximately 514-516 nm with shoulders toward shorter wavelengths (470-490 nm). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the uppermost band represented free retinal chromophore, as it contained no protein. The other bands were almost pure proteorhodopsin fractions as the banding patterns showed one major protein of 25 kDa. Tryptic, in-gel digestion of the 25 kDa proteins and of faint protein bands above and below 25 kDa was followed by mass spectrometry, confirming these protein bands to consist, nearly exclusively, proteorhodopsins. Only single peptides of few other proteins were detected. In total, at least seven predicted proteorhodopsin protein sequences were experimentally verified.
Identifiants
pubmed: 31960981
doi: 10.1002/jobm.201900594
doi:
Substances chimiques
Rhodopsins, Microbial
0
proteorhodopsin
0
Octoxynol
9002-93-1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
351-361Informations de copyright
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev. 2014;114:126-63.
Gushchin I, Gordeliy V. Microbial rhodopsins. In: Harris JR, Boekema EJ, editors. Membrane protein complexes: structure and function. Singapore: Springer Nature; 2018. p. 19-56.
Kandori H. Ion-pumping microbial rhodopsins. Front Mol Biosci. 2015;2:52.
Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971;233:149-52.
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. Biochim Biophys Acta. 2014;1837:614-25.
DeLong EF, Béjà O. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLOS Biol. 2010;8(4):e1000359.
Hovde BT, Deodato CR, Hunsperger HM, Ryken SA, Yost W, Jha RK, et al. Genome sequence and transcriptome analyses of Chrysochromulina tobin: Metabolic tools for enhanced algal fitness in the prominent order Prymnesiales (Haptophyceae). PLOS Genet. 2015;11:e1005469.
Li H, Huang CY, Govorunova EG, Schafer CT, Sineshchekov OA, Wang M, et al. Crystal structure of a natural light-gated anion channelrhodopsin. eLife. 2019;8:e41741.
Marchetti A, Catlett D, Hopkinson BM, Ellis K, Cassar N. Marine diatom proteorhodopsins and their potential role in coping with low iron availability. ISME J. 2015;9:2745-8.
Shi X, Li L, Guo C, Lin X, Li M, Li S. Rhodopsin gene expression regulated by the light dark cycle, light spectrum and light intensity in the dinoflagellate Prorocentrum. Front Microbiol. 2015;6:555.
Guo Z, Zhang H, Lin S. Light-promoted rhodopsin expression and starvation survival in the marine dinoflagellate Oxyrrhis marina. PLOS One. 2014;9:e114941.
Slamovits CH, Okamoto N, Burri L, James ER, Keeling PJ. A bacterial proteorhodopsin proton pump in marine eukaryotes. Nature Commun. 2011;2:183.
Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, et al. Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci U S A. 2007;104:4618-23.
Hartz AJ, Sherr BF, Sherr EB. Photoresponse in the heterotrophic marine dinoflagellate Oxyrrhis marina. J Eukaryot Microbiol. 2011;58:171-7.
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins RM, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook. Totowa: Humana Press; 2005. p. 571-607.
Guillard RRL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can J Microbiol. 1962;8:229-39.
Bathke L, Rhiel E, Krumbein WE, Marquardt J. Biochemical and immunochemical investigations on the light-harvesting system of the cryptophyte Rhodomonas sp.: evidence for a photosystem I specific antenna. Plant Biol. 1999;1:516-23.
Laemmli UK. Cleavage of structural proteins during assembly of head of bacteriophage T7. Nature. 1970;227:680-5.
Ammermann S, Schneider T, Westermann M, Hillebrand H, Rhiel E. Ejectisins: tough and tiny polypeptides are a major component of cryptophycean ejectisomes. Protoplasma. 2013;250:551-63.
Wöhlbrand L, Ruppersberg HS, Feenders C, Blasius B, Braun HP, Rabus R. Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE. Proteomics. 2016;16:973-88.
Janke C, Scholz F, Becker-Baldus J, Glaubitz C, Wood PG, Bamberg E, et al. Photocycle and vectorial proton transfer in a rhodopsin from the eukaryote Oxyrrhis marina. Biochemistry. 2013;52:2750-63.
Rhiel E, Wöhlbrand L, Rabus R, Voget S. Candidates of trichocyst matrix proteins of the dinoflagellate Oxyrrhis marina. Protoplasma. 2018;255:217-30.