Evidence of extrinsic factors dominating intrinsic blood host preferences of major African malaria vectors.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 01 2020
20 01 2020
Historique:
received:
26
09
2019
accepted:
02
12
2019
entrez:
22
1
2020
pubmed:
22
1
2020
medline:
26
11
2020
Statut:
epublish
Résumé
One of the key determinants of a haematophagous vector's capacity to transmit pathogens is its selection of which host to secure a blood meal from. This choice is influenced by both intrinsic (genetic) and extrinsic (environmental) factors, but little is known of their relative contributions. Blood fed Anopheles mosquitoes were collected from a malaria endemic village in Ghana. Collections were conducted across a range of different host availabilities and from both indoor and outdoor locations. These environmental factors were shown to impact dramatically the host choice of caught malaria vectors: mosquitoes caught indoors were ten-fold more likely to have sourced their blood meal from humans; and a halving in odds of being human-fed was found for mosquitoes caught only 25 m from the centre of the village. For the first time, we demonstrate that anthropophagy was better explained by extrinsic factors (namely, local host availability and indoor/outdoor trapping location) than intrinsic factors (namely, the (sibling) species of the mosquito caught) (respective Akaike information criterion estimates: 243.0 versus 359.8). Instead of characterizing biting behaviour on a taxonomic level, we illustrate the importance of assessing local entomology. Accounting for this behavioural plasticity is important, both in terms of measuring effectiveness of control programmes and in informing optimal disease control strategies.
Identifiants
pubmed: 31959845
doi: 10.1038/s41598-020-57732-1
pii: 10.1038/s41598-020-57732-1
pmc: PMC6971008
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
741Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : R01 AI123074
Pays : United States
Organisme : Wellcome Trust (Wellcome)
ID : (101285/Z/13/Z)
Pays : International
Références
Macdonald, G. The Epidemiology and Control of Malaria (Oxford University Press, 1957).
Yakob, L. How do biting disease vectors behaviourally respond to host availability? Parasites & vectors 9, 468 (2016).
doi: 10.1186/s13071-016-1762-4
Fornadel, C. M., Norris, L. C., Glass, G. E. & Norris, D. E. Analysis of Anopheles arabiensis blood feeding behavior in southern Zambia during the two years after introduction of insecticide-treated bed nets. Am. J. tropical Med. Hyg. 83, 848–853 (2010).
doi: 10.4269/ajtmh.2010.10-0242
Gatton, M. L. et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution 67, 1218–1230, https://doi.org/10.1111/evo.12063 (2013).
doi: 10.1111/evo.12063
pubmed: 23550770
pmcid: 3655544
Moiroux, N. et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J. Infect. Dis. 206, 1622–1629, https://doi.org/10.1093/infdis/jis565 (2012).
doi: 10.1093/infdis/jis565
pubmed: 22966127
Russell, T. L. et al. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar. J. 10, 80 (2011).
doi: 10.1186/1475-2875-10-80
Tedrow, R. E. et al. Anopheles mosquito surveillance in Madagascar reveals multiple blood feeding behavior and Plasmodium infection. PLOS Neglected Tropical Dis. 13, e0007176, https://doi.org/10.1371/journal.pntd.0007176 (2019).
doi: 10.1371/journal.pntd.0007176
Sousa, C. A. et al. Dogs as a Favored Host Choice of Anopheles gambiae sensu stricto (Diptera: Culicidae) of São Tomé, West Africa. J. Med. Entomology 38, 122–125, https://doi.org/10.1603/0022-2585-38.1.122 (2001).
doi: 10.1603/0022-2585-38.1.122
Bøgh, C., Pedersen, E. M., Mukoko, D. A. & Ouma, J. H. Permethrin‐impregnated bednet effects on resting and feeding behaviour of lymphatic filariasis vector mosquitoes in Kenya. Med. Veterinary Entomology 12, 52–59 (1998).
doi: 10.1046/j.1365-2915.1998.00091.x
Ndenga, B. A. et al. Malaria vectors and their blood-meal sources in an area of high bed net ownership in the western Kenya highlands. Malar. J. 15, 76 (2016).
doi: 10.1186/s12936-016-1115-y
Ranson, H. & Lissenden, N. Insecticide Resistance in African <em>Anopheles</em> Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends Parasitology 32, 187–196, https://doi.org/10.1016/j.pt.2015.11.010 (2016).
doi: 10.1016/j.pt.2015.11.010
Sherrard-Smith, E. et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proceedings of the National Academy of Sciences, 201820646, https://doi.org/10.1073/pnas.1820646116 (2019).
doi: 10.1073/pnas.1820646116
Durnez, L. & Coosemans, M. In Anopheles mosquitoes: new insights into malaria vectors/Manguin, Sylvie 671–704 (2013).
Govella, N. J. & Ferguson, H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front. Physiol. 3, 199 (2012).
doi: 10.3389/fphys.2012.00199
Killeen, G. F. C. controlling and eliminating residual malaria transmission. Malar. J. 13, 330, https://doi.org/10.1186/1475-2875-13-330 (2014).
doi: 10.1186/1475-2875-13-330
pubmed: 25149656
pmcid: 4159526
Kiware, S. S. et al. Simplified models of vector control impact upon malaria transmission by zoophagic mosquitoes. PLoS one 7, e37661 (2012).
doi: 10.1371/journal.pone.0037661
Monroe, A. et al. Human behaviour and residual malaria transmission in Zanzibar: findings from in-depth interviews and direct observation of community events. Malar. J. 18, 220, https://doi.org/10.1186/s12936-019-2855-2 (2019).
doi: 10.1186/s12936-019-2855-2
pubmed: 31262306
pmcid: 6604484
Muirhead-Thomson, R. The significance of irritability, behaviouristic avoidance and allied phenomena in malaria eradication. Bull. World Health Organ. 22, 721 (1960).
pubmed: 14425069
pmcid: 2555353
Pates, H. & Curtis, C. Mosquito behavior and vector control. Annu. Rev. Entomol. 50, 53–70 (2005).
doi: 10.1146/annurev.ento.50.071803.130439
Besansky, N. J., Hill, C. A. & Costantini, C. No accounting for taste: host preference in malaria vectors. Trends Parasitology 20, 249–251, https://doi.org/10.1016/j.pt.2004.03.007 (2004).
doi: 10.1016/j.pt.2004.03.007
Takken, W. & Verhulst, N. O. Host preferences of blood-feeding mosquitoes. Annu. Rev. Entomol. 58, 433–453, https://doi.org/10.1146/annurev-ento-120811-153618 (2013).
doi: 10.1146/annurev-ento-120811-153618
pubmed: 23020619
Garrett-Jones, C. The Human Blood Index of Malaria Vectors in Relation to Epidemiological Assessment. Bull. World Health Organ. 30, 241–261 (1964).
pubmed: 14153413
pmcid: 2554803
Orsborne, J. et al. Using the human blood index to investigate host biting plasticity: a systematic review and meta-regression of the three major African malaria vectors. Malar. J. 17, 479, https://doi.org/10.1186/s12936-018-2632-7 (2018).
doi: 10.1186/s12936-018-2632-7
pubmed: 30563533
pmcid: 6299493
Killeen, G. F. et al. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Glob. Health 2, e000212, https://doi.org/10.1136/bmjgh-2016-000212 (2017).
doi: 10.1136/bmjgh-2016-000212
pubmed: 28589023
pmcid: 5444085
Wolff, G. H. & Riffell, J. A. Olfaction, experience and neural mechanisms underlying mosquito host preference. J. Exp. Biol. 221, jeb157131 (2018).
doi: 10.1242/jeb.157131
Orsborne, J. et al. Investigating the blood-host plasticity and dispersal of Anopheles coluzzii using a novel field-based methodology. Parasites & Vectors 12, 143, https://doi.org/10.1186/s13071-019-3401-3 (2019).
doi: 10.1186/s13071-019-3401-3
Gillies, M. & Coetzee, M. A supplement to the Anophelinae of Africa South of the Sahara. Publ. S Afr. Inst. Med. Res. 55, 1–143 (1987).
Detinova, T. S., Bertram, D. & Organization, W. H. Age-grouping methods in Diptera of medical importance, with special reference to some vectors of malaria (1962).
Bass, C., Williamson, M. S. & Field, L. M. Development of a multiplex real-time PCR assay for identification of members of the Anopheles gambiae species complex. Acta Tropica 107, 50–53 (2008).
doi: 10.1016/j.actatropica.2008.04.009
Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163, https://doi.org/10.1186/1475-2875-7-163 (2008).
doi: 10.1186/1475-2875-7-163
pubmed: 18724871
pmcid: 2546427
Scott, J. A., Brogdon, W. G. & Collins, F. H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. tropical Med. Hyg. 49, 520–529 (1993).
doi: 10.4269/ajtmh.1993.49.520
Gunathilaka, N., Denipitiya, T., Hapugoda, M., Abeyewickreme, W. & Wickremasinghe, R. Determination of the foraging behaviour and blood meal source of malaria vector mosquitoes in Trincomalee District of Sri Lanka using a multiplex real time polymerase chain reaction assay. Malar. J. 15, 242, https://doi.org/10.1186/s12936-016-1279-5 (2016).
doi: 10.1186/s12936-016-1279-5
pubmed: 27118141
pmcid: 4845499
Garrett-Jones, C., Boreham, P. & Pant, C. Feeding habits of anophelines (Diptera: Culicidae) in 1971–78, with reference to the human blood index: a review. Bull. Entomological Res. 70, 165–185 (1980).
doi: 10.1017/S0007485300007422
Githeko, A., Service, M., Mbogo, C., Atieli, F. & Juma, F. Origin of blood meals in indoor and outdoor resting malaria vectors in western Kenya. Acta. Tropica. 58, 307–316 (1994).
doi: 10.1016/0001-706X(94)90024-8
Mahande, A., Mosha, F., Mahande, J. & Kweka, E. Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malar. J. 6, 100 (2007).
doi: 10.1186/1475-2875-6-100
Gari, T. et al. Malaria incidence and entomological findings in an area targeted for a cluster-randomized controlled trial to prevent malaria in Ethiopia: results from a pilot study. Malar. J. 15, 145, https://doi.org/10.1186/s12936-016-1199-4 (2016).
doi: 10.1186/s12936-016-1199-4
pubmed: 26957044
pmcid: 4784280
Protopopoff, N. et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet 391, 1577–1588, https://doi.org/10.1016/S0140-6736(18)30427-6 (2018).
doi: 10.1016/S0140-6736(18)30427-6
pubmed: 5910376
pmcid: 5910376
West, P. A. et al. Indoor Residual Spraying in Combination with Insecticide-Treated Nets Compared to Insecticide-Treated Nets Alone for Protection against Malaria: A Cluster Randomised Trial in Tanzania. PLOS Med. 11, e1001630, https://doi.org/10.1371/journal.pmed.1001630 (2014).
doi: 10.1371/journal.pmed.1001630
pubmed: 24736370
pmcid: 3988001
Foy, B. D. et al. Efficacy and risk of harms of repeat ivermectin mass drug administrations for control of malaria (RIMDAMAL): a cluster-randomised trial. Lancet 393, 1517–1526, https://doi.org/10.1016/S0140-6736(18)32321-3 (2019).
doi: 10.1016/S0140-6736(18)32321-3
pubmed: 30878222
pmcid: 6459982
Poché, R. M., Burruss, D., Polyakova, L., Poché, D. M. & Garlapati, R. B. Treatment of livestock with systemic insecticides for control of Anopheles arabiensis in western Kenya. Malar. J. 14, 351, https://doi.org/10.1186/s12936-015-0883-0 (2015).
doi: 10.1186/s12936-015-0883-0
pubmed: 26377691
pmcid: 4574316
Ng’habi, K. et al. Mesocosm experiments reveal the impact of mosquito control measures on malaria vector life history and population dynamics. Sci. Rep. 8, 13949, https://doi.org/10.1038/s41598-018-31805-8 (2018).
doi: 10.1038/s41598-018-31805-8
pubmed: 30224714
pmcid: 6141522
Yakob, L. Endectocide-treated cattle for malaria control: a coupled entomological-epidemiological model. Parasite Epidemiol. Control. 1, 2–9 (2016).
doi: 10.1016/j.parepi.2015.12.001
Imbahale, S. S. et al. Mapping the potential use of endectocide-treated cattle to reduce malaria transmission. Sci. Rep. 9, 5826, https://doi.org/10.1038/s41598-019-42356-x (2019).
doi: 10.1038/s41598-019-42356-x
pubmed: 30967606
pmcid: 6456610
Pasay, C. J. et al. Treatment of pigs with endectocides as a complementary tool for combating malaria transmission by Anopheles farauti (s.s.) in Papua New Guinea. Parasites & Vectors 12, 124, https://doi.org/10.1186/s13071-019-3392-0 (2019).
doi: 10.1186/s13071-019-3392-0
Yakob, L., Cameron, M. & Lines, J. Combining indoor and outdoor methods for controlling malaria vectors: an ecological model of endectocide-treated livestock and insecticidal bed nets. Malar. J. 16, 114 (2017).
doi: 10.1186/s12936-017-1748-5