Automatic Extraction of Dermatological Parameters from Nevi Using an Inexpensive Smartphone Microscope: A Proof of Concept.


Journal

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
ISSN: 2694-0604
Titre abrégé: Annu Int Conf IEEE Eng Med Biol Soc
Pays: United States
ID NLM: 101763872

Informations de publication

Date de publication:
Jul 2019
Historique:
entrez: 18 1 2020
pubmed: 18 1 2020
medline: 25 2 2020
Statut: ppublish

Résumé

The evolution of smartphone technology has made their use more common in dermatological applications. Here we studied the feasibility of using an inexpensive smartphone microscope for the extraction of dermatological parameters and compared the results obtained with a portable dermoscope, commonly used in clinical practice. Forty-two skin lesions were imaged with both devices and visually analyzed by an expert dermatologist. The presence of a reticular pattern was observed in 22 dermoscopic images, but only in 10 smartphone images. The proposed paradigm segments the image and extracts texture features which are used to train and validate a neural network to classify the presence of a reticular pattern. Using 5-fold cross-validation, an accuracy of 100% and 95% was obtained with the dermoscopic and smartphone images, respectively. This approach can be useful for general practitioners and as a triage tool for skin lesion analysis.

Identifiants

pubmed: 31945923
doi: 10.1109/EMBC.2019.8856720
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

399-402

Auteurs

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH