Swiprosin1/EFhd2 is involved in the monoaminergic and locomotor responses of psychostimulant drugs.


Journal

Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R

Informations de publication

Date de publication:
08 2020
Historique:
received: 23 08 2019
revised: 08 01 2020
accepted: 10 01 2020
pubmed: 17 1 2020
medline: 15 12 2020
entrez: 17 1 2020
Statut: ppublish

Résumé

Psychostimulants are widely abused drugs that may cause addiction in vulnerable individuals. While the reward circuitry of the brain is involved in addiction establishment, various pathways in the brain may provide protection at the molecular level that limits the acute and chronic effects of drugs. These targets may be used for strategies designed to prevent and treat addiction. Swiprosin-1/EF hand domain 2 (EFhd2) is a Ca

Identifiants

pubmed: 31943210
doi: 10.1111/jnc.14959
doi:

Substances chimiques

Calcium-Binding Proteins 0
Central Nervous System Stimulants 0
EFHD2 protein, mouse 0
Methamphetamine 44RAL3456C
Cocaine I5Y540LHVR

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

424-440

Informations de copyright

© 2020 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

Références

Ahmed, S. H., Badiani, A., Miczek, K. A., & Müller, C. P. (2018). Non-pharmacological factors that determine drug use and addiction. Neuroscience and Biobehavioral Reviews, https://doi.org/10.1016/j.neubiorev.2018.08.015
Alcaro, A., & Panksepp, J. (2011). The SEEKING mind: Primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression. Neuroscience and Biobehavioral Reviews, 35, 1805-1820. https://doi.org/10.1016/j.neubiorev.2011.03.002
Amato, D., Canneva, F., Cumming, P., Maschauer, S., Groos, D., Dahlmanns, J. K., … Müller, C.P. (2018). A dopaminergic mechanism of antipsychotic drug efficacy, failure, and failure reversal: The role of dopamine transporter. Molecular Psychiatry, https://doi.org/10.1038/s41380-018-0114-5
Borger, E., Herrmann, A., Mann, D. A., Spires-Jones, T., & Gunn-Moore, F. (2014). The calcium-binding protein EFhd2 modulates synapse formation in vitro and is linked to human dementia. Journal of Neuropathology and Experimental Neurology, 73, 1166-1182.
Brachs, S., Turqueti-Neves, A., Stein, M., Reimer, D., Brachvogel, B., Bösl, M., … Mielenz, D. (2014). Swiprosin-1/EFhd2 limits germinal center responses and humoral type 2 immunity. European Journal of Immunology, 44, 3206-3219.
Carey, R. J., DePalma, G., Damianopoulos, E., Müller, C. P., & Huston, J. P. (2004). The 5-HT(1A) receptor and behavioral stimulation in the rat: Effects of 8-OHDPAT on spontaneous and cocaine-induced behavior. Psychopharmacology (Berl), 177(1-2), 46-54. https://doi.org/10.1007/s00213-004-1917-4
Carey, R. J., DePalma, G., Shanahan, A., Damianopoulos, E. N., Müller, C. P., & Huston, J. P. (2008). Effects on spontaneous and cocaine-induced behavior of pharmacological inhibition of noradrenergic and serotonergic systems. Pharmacology, Biochemistry and Behavior, 89, 54-63.
Chen, B. T., Avshalumov, M. V., & Rice, M. E. (2002). Modulation of somatodendritic dopamine release by endogenous H2O2: susceptibility in substantia nigra but resistance in VTA. Journal of Neurophysiology, 87, 1155-1158.
Chen, C. Y., & Anthony, J. C. (2004). Epidemiological estimates of risk in the process of becoming dependent upon cocaine: Cocaine hydrochloride powder versus crack cocaine. Psychopharmacology (Berl), 172, 78-86. https://doi.org/10.1007/s00213-003-1624-6
Darke, S., Kaye, S., McKetin, R., & Duflou, J. (2008). Major physical and psychological harms of methamphetamine use. Drug Alcohol Rev., 27, 253-262. https://doi.org/10.1080/09595230801923702
Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America, 85, 5274-5278.
Dotzlaw, H., Schulz, M., Eggert, M., & Neeck, G. (2004). A pattern of protein expression in peripheral blood mononuclear cells distinguishes rheumatoid arthritis patients from healthy individuals. Biochimica Et Biophysica Acta (BBA) - Proteins Proteomics, 1696, 121-129. https://doi.org/10.1016/j.bbapap.2003.09.015
Dütting, S., Brachs, S., & Mielenz, D. (2011). Fraternal twins: Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1, two homologous EF-hand containing calcium binding adaptor proteins with distinct functions. Cell Communication and Signaling, 8, 4841-4854. https://doi.org/10.1186/1478-811X-9-2
Easton, A. C., Lourdusamy, A., Havranek, M., Mizuno, K., Solati, J., Golub, Y., … Müller, C. P. (2014). The establishment of cocaine’s reinforcing, but not hyperlocomotor effects are controlled by autophosphorylation of αCaMKII. Translational Psychiatry, 4, e457.
Easton, A. C., Lucchesi, W., Lourdusamy, A., Lenz, B., Solati, J., Golub, Y., … Müller, C. P. (2013b). αCaMKII autophosphorylation controls the establishment of alcohol drinking behavior. Neuropsychopharmacology, 38, 1636-1647. https://doi.org/10.1038/npp.2013.60
Easton, A. C., Lucchesi, W., Mizuno, K., Fernandes, C., Schumann, G., Giese, K. P., & Müller, C. P. (2013a). αCaMKII autophosphorylation controls the establishment of alcohol-induced conditioned place preference in mice. Behavioral Brain Research, 252, 72-76. https://doi.org/10.1016/j.bbr.2013.05.045
Easton, A. C., Lucchesi, W., Schumann, G., Peter Giese, K., Müller, C. P., & Fernandes, C. (2011). αCaMKII autophosphorylation controls exploratory activity to threatening novel stimuli. Neuropharmacology, 61, 1424-1431. https://doi.org/10.1016/j.neuropharm.2011.08.036
EMCDDA (2016). European Monitoring Centre for Drugs and Drug Addiction (2016), European Drug Report 2016: Trends and Developments. Luxembourg: Publications Office of the European Union.
Fan, C. C., Cheng, W. C., Huang, Y. C., Sher, Y. P., Liou, N. J., Chien, Y. C., … Chang, W. C. (2017). EFHD2 promotes epithelial-to-mesenchymal transition and correlates with postsurgical recurrence of stage I lung adenocarcinoma. Scientific Reports, 7, 14617.
Fleckenstein, A. E., Volz, T. J., Riddle, E. L., Gibb, J. W., & Hanson, G. R. (2007). New insights into the mechanism of action of amphetamines. Annual Review of Pharmacology and Toxicology, 47, 681-698.
Forthun, R. B., Aasebø, E., Rasinger, J. D., Bedringaas, S. L., Berven, F., Selheim, F., … Gjertsen, B. T. (2018). Phosphoprotein DIGE profiles reflect blast differentiation, cytogenetic risk stratification, FLT3/NPM1 mutations and therapy response in acute myeloid leukaemia. Journal of Proteomics, 173, 32-41. https://doi.org/10.1016/j.jprot.2017.11.014
Franklin, K. B. J., & Paxinos, G. (2007). The mouse brain in stereotaxic coordinates. San Diego, CA: Academic Press.
Groos, D., Zheng, F., Rauh, M., Quinger, B., Kornhuber, J., Müller, C. P., & Alzheimer, C. (2018). Chronic antipsychotic treatment targets GIRK current suppression, loss of long-term synaptic depression and behavioural sensitization in a mouse model of amphetamine psychosis. Journal of Psychopharmacology, 33, 74-85. https://doi.org/10.1177/0269881118812235
Hagen, S., Brachs, S., Kroczek, C., Fürnrohr, B. G., Lang, C., & Mielenz, D. (2012). The B cell receptor-induced calcium flux involves a calcium mediated positive feedback loop. Cell Calcium, 51, 411-417. https://doi.org/10.1016/j.ceca.2012.01.004
Havranek, M. M., Vonmoos, M., Müller, C. P., Büetiger, J. R., Tasiudi, E., Hulka, L. M., … Quednow, B. B. (2015). Serotonin transporter and tryptophan hydroxylase gene variations mediate working memory deficits of cocaine users. Neuropsychopharmacology, 40, 2929-2937. https://doi.org/10.1038/npp.2015.146
Hornbruch-Freitag, C., Griemert, B., Buttgereit, D., & Renkawitz-Pohl, R. (2011). Drosophila Swiprosin-1/EFHD2 accumulates at the prefusion complex stage during Drosophila myoblast fusion. Journal of Cell Science, 124, 3266-3278. https://doi.org/10.1242/jcs.083907
Hughes, R. N. (2007). Neotic preferences in laboratory rodents: Issues, assessment and substrates. Neuroscience and Biobehavioral Reviews, 31, 441-464.
Huh, Y. H., Kim, S. H., Chung, K.-H., Oh, S., Kwon, M.-S., Choi, H.-W., … Song, W. K. (2013). Swiprosin-1 modulates actin dynamics by regulating the F-actin accessibility to cofilin. Cellular and Molecular Life Sciences, 70, 4841-4854. https://doi.org/10.1007/s00018-013-1447-5
Huston, J. P., de Souza Silva, M. A., Topic, B., & Müller, C. P. (2013). What’s conditioned in conditioned place preference? Trends in Pharmacological Sciences, 34, 162-166.
Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29, 565-598. https://doi.org/10.1146/annurev.neuro.29.051605.113009
Johanson, C. E., & Fischman, M. W. (1989). The pharmacology of cocaine related to its abuse. Pharmacological Reviews, 41, 3-52.
Kalivas, P. W. (2009). The glutamate homeostasis hypothesis of addiction. Nature Reviews Neuroscience, 10, 561-572.
Kékesi, K. A., Juhász, G., Simor, A., Gulyássy, P., Szegő, É. M., Hunyadi-Gulyás, É., … Czurkó, A. (2012). Altered functional protein networks in the prefrontal cortex and amygdala of victims of suicide. PLoS ONE, 7, e50532. https://doi.org/10.1371/journal.pone.0050532
Kelley, A. E. (2004). Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron, 44, 161-179. https://doi.org/10.1016/j.neuron.2004.09.016
Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry, 3, 760-773. https://doi.org/10.1016/S2215-0366(16)00104-8
Kwon, M.-S., Park, K. R., Kim, Y.-D., Na, B.-R., Kim, H.-R., Choi, H.-J., … Jun, C.-D. (2013). Swiprosin-1 is a novel actin bundling protein that regulates cell spreading and migration. PLoS ONE, 8, e71626. https://doi.org/10.1371/journal.pone.0071626
Lammel, S., Hetzel, A., Häckel, O., Jones, I., Liss, B., & Roeper, J. (2008). Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57(5), 760-773. https://doi.org/10.1016/j.neuron.2008.01.022
McCreary, A. C., Müller, C. P., & Filip, M. (2015). Psychostimulants: Basic and clinical pharmacology. International Review of Neurobiology, 120, 41-83.
Mielenz, D., & Gunn-Moore, F. (2016). Physiological and pathophysiological functions of Swiprosin-1/EFhd2 in the nervous system. The Biochemical Journal, 473, 2429-2437.
Mielenz, D., Reichel, M., Jia, T., Quinlan, E. B., Stöckl, T., Mettang, M., … Müller, C. P. (2018). EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Molecular Psychiatry, 23(5), 1303-1319. https://doi.org/10.1038/mp.2017.63
Mielenz, D., Vettermann, C., Hampel, M., Lang, C., Avramidou, A., Karas, M., & Jäck, H.-M. (2005). Lipid rafts associate with intracellular B cell receptors and exhibit a B cell stage-specific protein composition. The Journal of Immunology, 174, 3508-3517. https://doi.org/10.4049/jimmunol.174.6.3508
Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: Cellular heterogeneity, connectivity and behavior. Nature Reviews Neuroscience, 18(2), 73-85.
Müller, C. P. (2017). Non addictive drug use: The way forward. In K. Wolff, J. White, & S. Karch (Eds.), The SAGE Handbook of Drugs & Alcohol Studies - Biological Approaches (pp. 411-434). London: SAGE.
Müller, C. P., Carey, R. J., Huston, J. P., & De Souza, S. M. A. (2007). Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Progress in Neurobiology, 81, 133-178. https://doi.org/10.1016/j.pneurobio.2007.01.001
Müller, C. P., Carey, R. J., Salloum, J. B., & Huston, J. P. (2003). Serotonin(1A)-receptor agonism attenuates the cocaine-induced increase in serotonin levels in the hippocampus and nucleus accumbens but potentiates hyperlocomotion: An in vivo microdialysis study. Neuropharmacology, 44, 592-603. https://doi.org/10.1016/S0028-3908(03)00046-7
Müller, C. P., & Homberg, J. R. (2015). The role of serotonin in drug use and addiction. Behavioral Brain Research, 277, 146-192.
Müller, C. P., Kalinichenko, L. S., Tiesel, J., Witt, M., Stöckl, T., Sprenger, E., … Kornhuber, J. (2017). Paradoxical antidepressant effects of alcohol are related to acid sphingomyelinase and its control of sphingolipid homeostasis. Acta Neuropathologica, 133, 463-483. https://doi.org/10.1007/s00401-016-1658-6
Müller, C. P., & Schumann, G. (2011a). Drugs as instruments: A new framework for non-addictive psychoactive drug use. The Behavioral and Brain Sciences, 34, 293-310. https://doi.org/10.1017/S0140525X11000057
Müller, C. P., & Schumann, G. (2011b). To use or not to use: Expanding the view on non-addictive psychoactive drug consumption and its implications. The Behavioral and Brain Sciences, 34, 328-347. https://doi.org/10.1017/S0140525X1100135X
Müller, C. P., Thönnessen, H., Barros, M., Tomaz, C., Carey, R. J., & Huston, J. P. (2004). Hippocampus 5-HT(1A)-receptors attenuate cocaine-induced hyperlocomotion and the increase in hippocampal but not nucleus accumbens 5-HT. Hippocampus, 14, 710-721.
Norbury, A., & Husain, M. (2015). Sensation-seeking: Dopaminergic modulation and risk for psychopathology. Behavioral Brain Research, 288, 79-93. https://doi.org/10.1016/j.bbr.2015.04.015
Nutt, D., King, L. A., Saulsbury, W., & Blakemore, C. (2007). Development of a rational scale to assess the harm of drugs of potential misuse. Lancet, 369, 1047-1053. https://doi.org/10.1016/S0140-6736(07)60464-4
Nutt, D. J., Lingford-Hughes, A., Erritzoe, D., & Stokes, P. R. (2015). The dopamine theory of addiction: 40 years of highs and lows. Nature Reviews Neuroscience, 16, 305-312.
Park, K. R., An, J. Y., Kang, J. Y., Lee, J. G., Lee, Y., Mun, S. A., … Eom, S. H. (2017). Structural mechanism underlying regulation of human EFhd2/Swiprosin-1 actin-bundling activity by Ser183 phosphorylation. Biochemical and Biophysical Research Communications, 483, 442-448.
Park, K. R., Kwon, M. S., An, J. Y., Lee, J. G., Youn, H. S., Lee, Y., … Lee, S. H. (2016). Structural implications of Ca2+-dependent actin-bundling function of human EFhd2/Swiprosin-1. Scientific Reports, 6, 39095.
Pelloux, Y., Dilleen, R., Economidou, D., Theobald, D., & Everitt, B. J. (2012). Reduced forebrain serotonin transmission is causally involved in the development of compulsive cocaine seeking in rats. Neuropsychopharmacology, 37, 2505-2514. https://doi.org/10.1038/npp.2012.111
Preller, K. H., Hulka, L. M., Vonmoos, M., Jenni, D., Baumgartner, M. R., Seifritz, E., … Quednow, B. B. (2014). Impaired emotional empathy and related social network deficits in cocaine users. Addiction Biology, 19, 452-466.
Pum, M., Carey, R. J., Huston, J. P., & Müller, C. P. (2007). Dissociating effects of cocaine and d-amphetamine on dopamine and serotonin in the perirhinal, entorhinal, and prefrontal cortex of freely moving rats. Psychopharmacology (Berl), 193, 375-390. https://doi.org/10.1007/s00213-007-0791-2
Pum, M. E., Carey, R. J., Huston, J. P., & Müller, C. P. (2008). Role of medial prefrontal, entorhinal, and occipital 5-HT in cocaine-induced place preference and hyperlocomotion: Evidence for multiple dissociations. Psychopharmacology (Berl), 201, 391-403. https://doi.org/10.1007/s00213-008-1296-3
Purohit, P., Perez-Branguli, F., Prots, I., Borger, E., Gunn-Moore, F., Welzel, O., … Mielenz, D. (2014). The Ca2+ Sensor Protein Swiprosin-1/EFhd2 is present in neurites and involved in kinesin-mediated transport in neurons. PLoS ONE, 9, e103976. https://doi.org/10.1371/journal.pone.0103976
Ramsey, P. H. (1993). Multiple comparisons of independent means. In L. K. Edwards (Ed.), Applied analysis of variance in behavioral science (pp. 25-61). New York: Marcel Dekker.
Regensburger, M., Mielenz, D., & Winner, B. (2018). Swiprosin-1/EFhd2 - another piece in the puzzle of tauopathy? Aging (Albany NY), 10, 522-523. https://doi.org/10.18632/aging.101431
Roeper, J. (2013). Dissecting the diversity of midbrain dopamine neurons. Trends in Neurosciences, 36(6), 336-342. https://doi.org/10.1016/j.tins.2013.03.003
Rothman, R. B., Baumann, M. H., Dersch, C. M., Romero, D. V., Rice, K. C., Carroll, F. I., & Partilla, J. S. (2001). Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse (New York, N. Y.), 39, 32-41. https://doi.org/10.1002/1098-2396(20010101)39:1<32:AID-SYN5>3.0.CO;2-3
Samaha, A. N., & Robinson, T. E. (2005). Why does the rapid delivery of drugs to the brain promote addiction? Trends in Pharmacological Sciences, 26, 82-87.
Scofield, M. D., & Kalivas, P. W. (2014). Astrocytic dysfunction and addiction: Consequences of impaired glutamate homeostasis. The Neuroscientist, 20, 610-622. https://doi.org/10.1177/1073858413520347
Solinas, M., Chauvet, C., Thiriet, N., El Rawas, R., & Jaber, M. (2008). Reversal of cocaine addiction by environmental enrichment. Proceedings of the National Academy of Sciences of the United States of America, 105, 17145-17150.
Steed, E., Jones, C. A., & McCreary, A. C. (2011). Serotonergic involvement in methamphetamine-induced locomotor activity: A detailed pharmacological study. Behavioral Brain Research, 220, 9-19. https://doi.org/10.1016/j.bbr.2011.01.026
Thiel, C. M., Müller, C. P., Huston, J. P., & Schwarting, R. K. (1999). High versus low reactivity to a novel environment: Behavioural, pharmacological and neurochemical assessments. Neuroscience, 93, 243-251. https://doi.org/10.1016/S0306-4522(99)00158-X
Tzschentke, T. M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addiction Biology, 12, 227-462. https://doi.org/10.1111/j.1369-1600.2007.00070.x
Vanderschuren, L. J., & Kalivas, P. W. (2000). Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies. Psychopharmacology (Berl), 151, 99-120. https://doi.org/10.1007/s002130000493
Vega, I. E., Traverso, E. E., Ferrer-Acosta, Y., Matos, E., Colon, M., Gonzalez, J., … Yen, S. H. (2008). A novel calcium-binding protein is associated with tau proteins in tauopathy. Journal of Neurochemistry, 106, 96-106. https://doi.org/10.1111/j.1471-4159.2008.05339.x
Wagner, F. A., & Anthony, J. C. (2002). From first drug use to drug dependence; developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology, 26, 479-488. https://doi.org/10.1016/S0893-133X(01)00367-0
Waldorf, D., Reinarman, C., & Murphy, S. (1991). Cocaine changes: The experience of using and quitting. Philadelphia: Temple University Press.
Weinshenker, D., & Schroeder, J. P. (2007). There and back again: A tale of norepinephrine and drug addiction. Neuropsychopharmacology, 32, 1433-1451. https://doi.org/10.1038/sj.npp.1301263
Westerink, B. H. C., & T. I. F. Cremers (Eds.) (2007). Handbook of microdialysis. Methods, applications and clinical. London: Academic Press.
Zheng, F., Puppel, A., Huber, S. E., Link, A. S., Eulenburg, V., van Brederode, J. F., … Alzheimer, C. (2016). Activin Controls ethanol potentiation of inhibitory synaptic transmission through GABAA receptors and concomitant behavioral sedation. Neuropsychopharmacology, 41, 2024-2033. https://doi.org/10.1038/npp.2015.372
Zuckerman, M. (1996). The psychobiological model for impulsive unsocialized sensation seeking: A comparative approach. Neuropsychobiology, 34, 125-129. https://doi.org/10.1159/000119303

Auteurs

Georgios Kogias (G)

Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Fang Zheng (F)

Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Liubov S Kalinichenko (LS)

Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Johannes Kornhuber (J)

Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Christian Alzheimer (C)

Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Dirk Mielenz (D)

Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Christian P Müller (CP)

Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH