Macroevolutionary convergence connects morphological form to ecological function in birds.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
21
06
2019
accepted:
20
11
2019
pubmed:
15
1
2020
medline:
1
4
2020
entrez:
15
1
2020
Statut:
ppublish
Résumé
Animals have diversified into a bewildering variety of morphological forms exploiting a complex configuration of trophic niches. Their morphological diversity is widely used as an index of ecosystem function, but the extent to which animal traits predict trophic niches and associated ecological processes is unclear. Here we use the measurements of nine key morphological traits for >99% bird species to show that avian trophic diversity is described by a trait space with four dimensions. The position of species within this space maps with 70-85% accuracy onto major niche axes, including trophic level, dietary resource type and finer-scale variation in foraging behaviour. Phylogenetic analyses reveal that these form-function associations reflect convergence towards predictable trait combinations, indicating that morphological variation is organized into a limited set of dimensions by evolutionary adaptation. Our results establish the minimum dimensionality required for avian functional traits to predict subtle variation in trophic niches and provide a global framework for exploring the origin, function and conservation of bird diversity.
Identifiants
pubmed: 31932703
doi: 10.1038/s41559-019-1070-4
pii: 10.1038/s41559-019-1070-4
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
230-239Commentaires et corrections
Type : CommentIn
Références
Elton, C. S. Animal Ecology (Macmillan, 1927).
Butterfield, N. J. Animals and the invention of the Phanerozoic Earth system. Trends Ecol. Evol. 26, 81–87 (2011).
doi: 10.1016/j.tree.2010.11.012
pubmed: 21190752
pmcid: 21190752
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
doi: 10.1126/science.1205106
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
doi: 10.1126/science.1251817
pubmed: 25061202
pmcid: 25061202
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
doi: 10.1038/nature16489
pubmed: 26700811
pmcid: 26700811
Lauder, G. V. in Functional Morphology in Vertebrate Paleontology (ed. Thomason, J. J.) 1–18 (Cambridge Univ. Press, 1995).
Carroll, S. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109 (2001).
doi: 10.1038/35059227
pubmed: 11234024
pmcid: 11234024
Wainwright, P. C. Functional versus morphological diversity in macroevolution. Annu. Rev. Ecol. Evol. Syst. 38, 381–401 (2007).
doi: 10.1146/annurev.ecolsys.38.091206.095706
Losos, J. B. Convergence, adaptation, and constraint. Evolution 65, 1827–1840 (2011).
doi: 10.1111/j.1558-5646.2011.01289.x
pubmed: 21729041
pmcid: 21729041
Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).
doi: 10.1146/annurev.ecolsys.38.091206.095818
Peck, A. L. Aristotle: History of Animals (Harvard Univ. Press, 1970).
Cernansky, R. Biodiversity moves beyond counting species. Nature 546, 22–24 (2017).
doi: 10.1038/546022a
pubmed: 28569825
pmcid: 28569825
Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).
doi: 10.1073/pnas.1413650112
pubmed: 25561561
pmcid: 25561561
Larcombe, M. J., Jordan, G. J., Bryant, D. & Higgins, S. I. The dimensionality of niche space allows bounded and unbounded processes to jointly influence diversification. Nat. Commun. 9, 4258 (2018).
doi: 10.1038/s41467-018-06732-x
pubmed: 30323199
pmcid: 30323199
Diaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
doi: 10.1016/S0169-5347(01)02283-2
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
doi: 10.1016/j.tree.2006.02.002
pubmed: 16701083
pmcid: 16701083
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
doi: 10.1046/j.1365-2435.2002.00664.x
Purves, D. et al. Ecosystems: time to model all life on earth. Nature 493, 295–297 (2013).
doi: 10.1038/493295a
pubmed: 23325192
pmcid: 23325192
Didham, R. K., Leather, S. R. & Basset, Y. Circle the bandwagons: challenges mount against the theoretical foundations of applied functional trait and ecosystem service research. Insect Conserv. Divers. 9, 1–3 (2016).
doi: 10.1111/icad.12150
Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B 371, 20150268 (2016).
doi: 10.1098/rstb.2015.0268
Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
doi: 10.1101/SQB.1957.022.01.039
Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).
doi: 10.1126/science.185.4145.27
Cohen, J. E. Food Webs and Niche Space (Princeton Univ. Press, 1978).
Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).
doi: 10.1038/35004572
pubmed: 10724169
pmcid: 10724169
Shoval, O. et al. Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160 (2012).
doi: 10.1126/science.1217405
pubmed: 22539553
pmcid: 22539553
Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).
doi: 10.1126/science.aam5979
pubmed: 30409860
pmcid: 30409860
Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).
doi: 10.1111/ele.12462
pubmed: 26096695
pmcid: 26096695
Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).
doi: 10.1111/1365-2745.12187
Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
doi: 10.1046/j.1461-0248.2002.00339.x
Eklöf, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583 (2013).
doi: 10.1111/ele.12081
pubmed: 23438174
pmcid: 23438174
Miles, D. B. & Ricklefs, R. E. The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65, 1629–1640 (1984).
doi: 10.2307/1939141
Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. Biol. Sci. 283, 20152013 (2016).
doi: 10.1098/rspb.2015.2013
pubmed: 26740616
pmcid: 26740616
Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357 (2016).
doi: 10.1073/pnas.1602683113
pubmed: 27125856
pmcid: 27125856
Miller, E. T., Wagner, S. K., Harmon, L. J. & Ricklefs, R. E. Radiating despite a lack of character: ecological divergence among closely related, morphologically similar honeyeaters (Aves: Meliphagidae) co-occurring in arid Australian environments. Am. Nat. 189, E14–E30 (2017).
doi: 10.1086/690008
pubmed: 28107055
pmcid: 28107055
Felice, R. N., Tobias, J. A., Pigot, A. L. & Goswami, A. Dietary niche and the evolution of cranial morphology in birds. Proc. Biol. Sci. 286, 20182677 (2019).
doi: 10.1098/rspb.2018.2677
pubmed: 30963827
pmcid: 30963827
Navalón, G., Bright, J. A., Marugán‐Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).
doi: 10.1111/evo.13655
pubmed: 30537045
pmcid: 30537045
Grinnell, J. The niche-relationships of the California thrasher. Auk 34, 427–433 (1917).
doi: 10.2307/4072271
Bock, W. J. Concepts and methods in ecomorphology. J. Biosci. 19, 403–413 (1994).
doi: 10.1007/BF02703177
Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton Univ. Press, 1999).
Wilman, W. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
doi: 10.1890/13-1917.1
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
doi: 10.1038/nature11631
pubmed: 23123857
pmcid: 23123857
Ricklefs, R. E. & Travis, J. A morphological approach to the study of avian community organization. Auk 97, 321–338 (1980).
Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).
doi: 10.1038/nature21074
pubmed: 28146475
pmcid: 28146475
Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge Univ. Press, 1983).
Sugihara, G. Minimal community structure: an explanation of species abundance patterns. Am. Nat. 116, 770–787 (1980).
doi: 10.1086/283669
pubmed: 29513556
pmcid: 29513556
Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).
Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).
doi: 10.1126/science.1232392
pubmed: 23869019
pmcid: 23869019
Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).
doi: 10.1093/sysbio/syv073
pubmed: 26454873
pmcid: 26454873
Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).
doi: 10.1016/j.cub.2012.10.048
pubmed: 23159601
pmcid: 23159601
Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).
doi: 10.1038/s41467-018-05126-3
pubmed: 30038259
pmcid: 30038259
Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).
doi: 10.1126/science.1215855
pubmed: 22700920
pmcid: 22700920
S̜ekercioğlu, C̜., Wenny, D. G. & Whelan, C. J. Why Birds Matter: Avian Ecological Function and Ecosystem Services (Univ. of Chicago Press, 2016).
Derryberry, E. P. et al. Lineage diversification and morphological evolution in a large‐scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986 (2011).
doi: 10.1111/j.1558-5646.2011.01374.x
pubmed: 21967436
pmcid: 21967436
Ricklefs, R. E. Passerine morphology: external measurements of approximately one‐quarter of passerine bird species. Ecology 98, 1472 (2017).
doi: 10.1002/ecy.1783
pubmed: 28241382
pmcid: 28241382
Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, 1993).
Burin, G., Kissling, W. D., Guimarães, P. R.Jr., Şekercioğlu, Ç. H. & Quental, T. B. Omnivory in birds is a macroevolutionary sink. Nat. Commun. 7, 11250 (2016).
doi: 10.1038/ncomms11250
pubmed: 27052750
pmcid: 27052750
del Hoyo, J, Elliott, A, Sargatal, J, Christie, D. A. & de Juana, E. Handbook of the Birds of the World (Lynx Edicions, 1997).
Remsen, J. V. & Robinson, S. K. A classification scheme for foraging behaviour of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).
Croxall, J. P. Seabirds: Feeding Ecology and Role in Marine Ecosystems (Cambridge Univ. Press, 1987).
Ashmole, N. P. in Avian Biology Vol. 1 (eds Farner, D. S. et al.) 223–286 (Academic Press, 1971).
Fitzpatrick, J. W. Form, foraging behavior, and adaptive radiation in the Tyrannidae. Ornithol. Monogr. 36, 447–470 (1985).
doi: 10.2307/40168298
Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).
doi: 10.1126/science.1157704
pubmed: 18583609
pmcid: 18583609
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
doi: 10.1186/1471-2148-7-214
pubmed: 17996036
pmcid: 17996036
ArcGIS Desktop: Release 10.3 (Environmental Systems Research Institute, 2014).
Breiman, L. Random forests. Mach. Learn. 45, 15–32 (2001).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Grundler, M. & Rabosky, D. L. Trophic divergence despite morphological convergence in a continental radiation of snakes. Proc. Biol. Sci. 281, 20140413 (2014).
doi: 10.1098/rspb.2014.0413
pubmed: 24920479
pmcid: 24920479
Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
doi: 10.1111/2041-210X.12199
Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).
doi: 10.1038/ncomms2958
pubmed: 23739623
pmcid: 23739623
Nosil, P. & Harmon, L. J. in Speciation and Patterns of Diversity (eds Butlin, R. et al.) 127–154 (Cambridge Univ. Press, 2009).
Rayner, J. M. V. in Current Ornithology Vol. 5 (ed. Johnston, R. F.) 1–66 (Springer, 1988).
Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).
doi: 10.1111/j.1558-5646.2009.00804.x
pubmed: 19663993
pmcid: 19663993
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
doi: 10.1111/j.2041-210X.2011.00169.x
Sidlauskas, B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156 (2008).
doi: 10.1111/j.1558-5646.2008.00519.x
pubmed: 18786183
pmcid: 18786183
Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).
doi: 10.1111/evo.12729
pubmed: 26177938
pmcid: 26177938
Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).
doi: 10.1126/science.1228282
pubmed: 23258408
pmcid: 23258408