Macroevolutionary convergence connects morphological form to ecological function in birds.


Journal

Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577

Informations de publication

Date de publication:
02 2020
Historique:
received: 21 06 2019
accepted: 20 11 2019
pubmed: 15 1 2020
medline: 1 4 2020
entrez: 15 1 2020
Statut: ppublish

Résumé

Animals have diversified into a bewildering variety of morphological forms exploiting a complex configuration of trophic niches. Their morphological diversity is widely used as an index of ecosystem function, but the extent to which animal traits predict trophic niches and associated ecological processes is unclear. Here we use the measurements of nine key morphological traits for >99% bird species to show that avian trophic diversity is described by a trait space with four dimensions. The position of species within this space maps with 70-85% accuracy onto major niche axes, including trophic level, dietary resource type and finer-scale variation in foraging behaviour. Phylogenetic analyses reveal that these form-function associations reflect convergence towards predictable trait combinations, indicating that morphological variation is organized into a limited set of dimensions by evolutionary adaptation. Our results establish the minimum dimensionality required for avian functional traits to predict subtle variation in trophic niches and provide a global framework for exploring the origin, function and conservation of bird diversity.

Identifiants

pubmed: 31932703
doi: 10.1038/s41559-019-1070-4
pii: 10.1038/s41559-019-1070-4
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

230-239

Commentaires et corrections

Type : CommentIn

Références

Elton, C. S. Animal Ecology (Macmillan, 1927).
Butterfield, N. J. Animals and the invention of the Phanerozoic Earth system. Trends Ecol. Evol. 26, 81–87 (2011).
doi: 10.1016/j.tree.2010.11.012 pubmed: 21190752 pmcid: 21190752
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
doi: 10.1126/science.1205106
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
doi: 10.1126/science.1251817 pubmed: 25061202 pmcid: 25061202
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
doi: 10.1038/nature16489 pubmed: 26700811 pmcid: 26700811
Lauder, G. V. in Functional Morphology in Vertebrate Paleontology (ed. Thomason, J. J.) 1–18 (Cambridge Univ. Press, 1995).
Carroll, S. Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109 (2001).
doi: 10.1038/35059227 pubmed: 11234024 pmcid: 11234024
Wainwright, P. C. Functional versus morphological diversity in macroevolution. Annu. Rev. Ecol. Evol. Syst. 38, 381–401 (2007).
doi: 10.1146/annurev.ecolsys.38.091206.095706
Losos, J. B. Convergence, adaptation, and constraint. Evolution 65, 1827–1840 (2011).
doi: 10.1111/j.1558-5646.2011.01289.x pubmed: 21729041 pmcid: 21729041
Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).
doi: 10.1146/annurev.ecolsys.38.091206.095818
Peck, A. L. Aristotle: History of Animals (Harvard Univ. Press, 1970).
Cernansky, R. Biodiversity moves beyond counting species. Nature 546, 22–24 (2017).
doi: 10.1038/546022a pubmed: 28569825 pmcid: 28569825
Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).
doi: 10.1073/pnas.1413650112 pubmed: 25561561 pmcid: 25561561
Larcombe, M. J., Jordan, G. J., Bryant, D. & Higgins, S. I. The dimensionality of niche space allows bounded and unbounded processes to jointly influence diversification. Nat. Commun. 9, 4258 (2018).
doi: 10.1038/s41467-018-06732-x pubmed: 30323199 pmcid: 30323199
Diaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
doi: 10.1016/S0169-5347(01)02283-2
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
doi: 10.1016/j.tree.2006.02.002 pubmed: 16701083 pmcid: 16701083
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
doi: 10.1046/j.1365-2435.2002.00664.x
Purves, D. et al. Ecosystems: time to model all life on earth. Nature 493, 295–297 (2013).
doi: 10.1038/493295a pubmed: 23325192 pmcid: 23325192
Didham, R. K., Leather, S. R. & Basset, Y. Circle the bandwagons: challenges mount against the theoretical foundations of applied functional trait and ecosystem service research. Insect Conserv. Divers. 9, 1–3 (2016).
doi: 10.1111/icad.12150
Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B 371, 20150268 (2016).
doi: 10.1098/rstb.2015.0268
Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
doi: 10.1101/SQB.1957.022.01.039
Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).
doi: 10.1126/science.185.4145.27
Cohen, J. E. Food Webs and Niche Space (Princeton Univ. Press, 1978).
Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).
doi: 10.1038/35004572 pubmed: 10724169 pmcid: 10724169
Shoval, O. et al. Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 336, 1157–1160 (2012).
doi: 10.1126/science.1217405 pubmed: 22539553 pmcid: 22539553
Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).
doi: 10.1126/science.aam5979 pubmed: 30409860 pmcid: 30409860
Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).
doi: 10.1111/ele.12462 pubmed: 26096695 pmcid: 26096695
Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).
doi: 10.1111/1365-2745.12187
Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
doi: 10.1046/j.1461-0248.2002.00339.x
Eklöf, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583 (2013).
doi: 10.1111/ele.12081 pubmed: 23438174 pmcid: 23438174
Miles, D. B. & Ricklefs, R. E. The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65, 1629–1640 (1984).
doi: 10.2307/1939141
Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. Biol. Sci. 283, 20152013 (2016).
doi: 10.1098/rspb.2015.2013 pubmed: 26740616 pmcid: 26740616
Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357 (2016).
doi: 10.1073/pnas.1602683113 pubmed: 27125856 pmcid: 27125856
Miller, E. T., Wagner, S. K., Harmon, L. J. & Ricklefs, R. E. Radiating despite a lack of character: ecological divergence among closely related, morphologically similar honeyeaters (Aves: Meliphagidae) co-occurring in arid Australian environments. Am. Nat. 189, E14–E30 (2017).
doi: 10.1086/690008 pubmed: 28107055 pmcid: 28107055
Felice, R. N., Tobias, J. A., Pigot, A. L. & Goswami, A. Dietary niche and the evolution of cranial morphology in birds. Proc. Biol. Sci. 286, 20182677 (2019).
doi: 10.1098/rspb.2018.2677 pubmed: 30963827 pmcid: 30963827
Navalón, G., Bright, J. A., Marugán‐Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).
doi: 10.1111/evo.13655 pubmed: 30537045 pmcid: 30537045
Grinnell, J. The niche-relationships of the California thrasher. Auk 34, 427–433 (1917).
doi: 10.2307/4072271
Bock, W. J. Concepts and methods in ecomorphology. J. Biosci. 19, 403–413 (1994).
doi: 10.1007/BF02703177
Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton Univ. Press, 1999).
Wilman, W. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
doi: 10.1890/13-1917.1
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
doi: 10.1038/nature11631 pubmed: 23123857 pmcid: 23123857
Ricklefs, R. E. & Travis, J. A morphological approach to the study of avian community organization. Auk 97, 321–338 (1980).
Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).
doi: 10.1038/nature21074 pubmed: 28146475 pmcid: 28146475
Peters, R. H. The Ecological Implications of Body Size Vol. 2 (Cambridge Univ. Press, 1983).
Sugihara, G. Minimal community structure: an explanation of species abundance patterns. Am. Nat. 116, 770–787 (1980).
doi: 10.1086/283669 pubmed: 29513556 pmcid: 29513556
Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).
Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).
doi: 10.1126/science.1232392 pubmed: 23869019 pmcid: 23869019
Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).
doi: 10.1093/sysbio/syv073 pubmed: 26454873 pmcid: 26454873
Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).
doi: 10.1016/j.cub.2012.10.048 pubmed: 23159601 pmcid: 23159601
Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).
doi: 10.1038/s41467-018-05126-3 pubmed: 30038259 pmcid: 30038259
Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).
doi: 10.1126/science.1215855 pubmed: 22700920 pmcid: 22700920
S̜ekercioğlu, C̜., Wenny, D. G. & Whelan, C. J. Why Birds Matter: Avian Ecological Function and Ecosystem Services (Univ. of Chicago Press, 2016).
Derryberry, E. P. et al. Lineage diversification and morphological evolution in a large‐scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986 (2011).
doi: 10.1111/j.1558-5646.2011.01374.x pubmed: 21967436 pmcid: 21967436
Ricklefs, R. E. Passerine morphology: external measurements of approximately one‐quarter of passerine bird species. Ecology 98, 1472 (2017).
doi: 10.1002/ecy.1783 pubmed: 28241382 pmcid: 28241382
Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, 1993).
Burin, G., Kissling, W. D., Guimarães, P. R.Jr., Şekercioğlu, Ç. H. & Quental, T. B. Omnivory in birds is a macroevolutionary sink. Nat. Commun. 7, 11250 (2016).
doi: 10.1038/ncomms11250 pubmed: 27052750 pmcid: 27052750
del Hoyo, J, Elliott, A, Sargatal, J, Christie, D. A. & de Juana, E. Handbook of the Birds of the World (Lynx Edicions, 1997).
Remsen, J. V. & Robinson, S. K. A classification scheme for foraging behaviour of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).
Croxall, J. P. Seabirds: Feeding Ecology and Role in Marine Ecosystems (Cambridge Univ. Press, 1987).
Ashmole, N. P. in Avian Biology Vol. 1 (eds Farner, D. S. et al.) 223–286 (Academic Press, 1971).
Fitzpatrick, J. W. Form, foraging behavior, and adaptive radiation in the Tyrannidae. Ornithol. Monogr. 36, 447–470 (1985).
doi: 10.2307/40168298
Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).
doi: 10.1126/science.1157704 pubmed: 18583609 pmcid: 18583609
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
doi: 10.1186/1471-2148-7-214 pubmed: 17996036 pmcid: 17996036
ArcGIS Desktop: Release 10.3 (Environmental Systems Research Institute, 2014).
Breiman, L. Random forests. Mach. Learn. 45, 15–32 (2001).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Grundler, M. & Rabosky, D. L. Trophic divergence despite morphological convergence in a continental radiation of snakes. Proc. Biol. Sci. 281, 20140413 (2014).
doi: 10.1098/rspb.2014.0413 pubmed: 24920479 pmcid: 24920479
Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
doi: 10.1111/2041-210X.12199
Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).
doi: 10.1038/ncomms2958 pubmed: 23739623 pmcid: 23739623
Nosil, P. & Harmon, L. J. in Speciation and Patterns of Diversity (eds Butlin, R. et al.) 127–154 (Cambridge Univ. Press, 2009).
Rayner, J. M. V. in Current Ornithology Vol. 5 (ed. Johnston, R. F.) 1–66 (Springer, 1988).
Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).
doi: 10.1111/j.1558-5646.2009.00804.x pubmed: 19663993 pmcid: 19663993
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
doi: 10.1111/j.2041-210X.2011.00169.x
Sidlauskas, B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156 (2008).
doi: 10.1111/j.1558-5646.2008.00519.x pubmed: 18786183 pmcid: 18786183
Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).
doi: 10.1111/evo.12729 pubmed: 26177938 pmcid: 26177938
Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).
doi: 10.1126/science.1228282 pubmed: 23258408 pmcid: 23258408

Auteurs

Alex L Pigot (AL)

Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK. a.pigot@ucl.ac.uk.
Department of Zoology, University of Oxford, Oxford, UK. a.pigot@ucl.ac.uk.

Catherine Sheard (C)

Department of Zoology, University of Oxford, Oxford, UK.
School of Biology, University of St Andrews, St Andrews, UK.

Eliot T Miller (ET)

Cornell Lab of Ornithology, Ithaca, NY, USA.
Department of Biological Sciences, University of Idaho, Moscow, ID, USA.

Tom P Bregman (TP)

Department of Zoology, University of Oxford, Oxford, UK.
Future-Fit Foundation, London, UK.

Benjamin G Freeman (BG)

Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.

Uri Roll (U)

Department of Zoology, University of Oxford, Oxford, UK.
Mitrani Department of Desert Ecology, Jacob Balaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Nathalie Seddon (N)

Department of Zoology, University of Oxford, Oxford, UK.

Christopher H Trisos (CH)

Department of Zoology, University of Oxford, Oxford, UK.
African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa.

Brian C Weeks (BC)

School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.
Department of Ornithology, American Museum of Natural History, New York, NY, USA.

Joseph A Tobias (JA)

Department of Zoology, University of Oxford, Oxford, UK. j.tobias@imperial.ac.uk.
Department of Life Sciences, Imperial College London Silwood Park, Ascot, UK. j.tobias@imperial.ac.uk.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH