Anti-tumour immune response in GL261 glioblastoma generated by Temozolomide Immune-Enhancing Metronomic Schedule monitored with MRSI-based nosological images.


Journal

NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233

Informations de publication

Date de publication:
04 2020
Historique:
received: 27 07 2019
revised: 25 10 2019
accepted: 30 10 2019
pubmed: 12 1 2020
medline: 8 1 2021
entrez: 12 1 2020
Statut: ppublish

Résumé

Glioblastomas (GB) are brain tumours with poor prognosis even after aggressive therapy. Improvements in both therapeutic and follow-up strategies are urgently needed. In previous work we described an oscillatory pattern of response to Temozolomide (TMZ) using a standard administration protocol, detected through MRSI-based machine learning approaches. In the present work, we have introduced the Immune-Enhancing Metronomic Schedule (IMS) with an every 6-d TMZ administration at 60 mg/kg and investigated the consistence of such oscillatory behaviour. A total of n = 17 GL261 GB tumour-bearing C57BL/6j mice were studied with MRI/MRSI every 2 d, and the oscillatory behaviour (6.2 ± 1.5 d period from the TMZ administration day) was confirmed during response. Furthermore, IMS-TMZ produced significant improvement in mice survival (22.5 ± 3.0 d for controls vs 135.8 ± 78.2 for TMZ-treated), outperforming standard TMZ treatment. Histopathological correlation was investigated in selected tumour samples (n = 6) analyzing control and responding fields. Significant differences were found for CD3+ cells (lymphocytes, 3.3 ± 2.5 vs 4.8 ± 2.9, respectively) and Iba-1 immunostained area (microglia/macrophages, 16.8% ± 9.7% and 21.9% ± 11.4%, respectively). Unexpectedly, during IMS-TMZ treatment, tumours from some mice (n = 6) fully regressed and remained undetectable without further treatment for 1 mo. These animals were considered "cured" and a GL261 re-challenge experiment performed, with no tumour reappearance in five out of six cases. Heterogeneous therapy response outcomes were detected in tumour-bearing mice, and a selected group was investigated (n = 3 non-responders, n = 6 relapsing tumours, n = 3 controls). PD-L1 content was found ca. 3-fold increased in the relapsing group when comparing with control and non-responding groups, suggesting that increased lymphocyte inhibition could be associated to IMS-TMZ failure. Overall, data suggest that host immune response has a relevant role in therapy response/escape in GL261 tumours under IMS-TMZ therapy. This is associated to changes in the metabolomics pattern, oscillating every 6 d, in agreement with immune cycle length, which is being sampled by MRSI-derived nosological images.

Identifiants

pubmed: 31926117
doi: 10.1002/nbm.4229
doi:

Substances chimiques

Antineoplastic Agents, Alkylating 0
B7-H1 Antigen 0
Cd274 protein, mouse 0
Temozolomide YF1K15M17Y

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e4229

Informations de copyright

© 2020 John Wiley & Sons, Ltd.

Références

Buckner JC. Factors influencing survival in high-grade gliomas. Semin Oncol. 2003;30:10-14.
Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459-466.
Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol. 2010;9(9):906-920.
Vogelbaum MA, Jost S, Aghi MK, et al. Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery. 2012;70(1):234-243.
Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-247.
Hygino da Cruz LC, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. Am J Neuroradiol. 2011;32(11):1978-1985.
Pichler BJ, Wehrl HF, Judenhofer MS. Latest advances in molecular imaging instrumentation. J Nucl Med. 2008;49(suppl 2):5S-23S.
Horská A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):293-310.
Hattingen E, Jurcoane A, Bahr O, et al. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol. 2011;13(12):1349-1363.
Nelson SJ. Assessment of therapeutic response and treatment planning for brain tumors using metabolic and physiological MRI. NMR Biomed. 2011;24(6):734-749.
Ortega-Martorell S, Julià-Sapé M, Lisboa P, Arús C. Pattern recognition analysis of MR spectra. In: EMagRes. Vol.5 Chichester, UK: John Wiley & Sons; 2016:945-958.
Laudadio T, Martínez-Bisbal MC, Celda B, Van Huffel S. Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging. NMR Biomed. 2008;21(4):311-321.
Simões RV, Ortega-Martorell S, Delgado-Goñi T, et al. Improving the classification of brain tumors in mice with perturbation enhanced (PE)-MRSI. Integr Biol (Camb). 2012;4(2):183-191.
Arias-Ramos N, Ferrer-Font L, Lope-Piedrafita S, et al. Metabolomics of therapy response in preclinical glioblastoma: a multi-slice MRSI-based volumetric analysis for noninvasive assessment of temozolomide treatment. Metabolites. 2017;7(2):20.
Liikanen I, Ahtiainen L, Hirvinen ML, et al. Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Ther. 2013;21(6):1212-1223.
Karman J, Ling C, Sandor M, Fabry Z. Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol. 2004;173(4):2353-2361.
Wu J, Waxman DJ. Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8+ T-cell responses and immune memory. Oncoimmunology. 2015;4(4):e1005521.
Villamañán L. Unraveling CK2 Inhibition and Temozolomide Contribution to Therapy Response in Preclinical GL261 Gglioblastoma: Immune System Implications and Magnetic Resonance Based Nosological Imaging [disseration]. Univ Autònoma Barcelona; 2019. https://tdx.cat/handle/10803/666881.
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1-10.
Lorger M. Tumor microenvironment in the brain. Cancers (Basel). 2012;4(1):218-243.
He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep. 2015;5(1):13110.
Katsuya Y, Horinouchi H, Asao T, et al. Expression of programmed death 1 (PD-1) and its ligand (PD-L1) in thymic epithelial tumors: impact on treatment efficacy and alteration in expression after chemotherapy. Lung Cancer. 2016;99:4-10.
Hecht M, Büttner-Herold M, Erlenbach-Wünsch K, et al. PD-L1 is upregulated by radiochemotherapy in rectal adenocarcinoma patients and associated with a favourable prognosis. Eur J Cancer. 2016;65:52-60.
Zhang P, Su D-M, Liang M, Fu J. Chemopreventive agents induce programmed death-1-ligand 1 (PD-L1) surface expression in breast cancer cells and promote PD-L1-mediated T cell apoptosis. Mol Immunol. 2008;45(5):1470-1476.
Simões RV, Delgado-Goñi T, Lope-Piedrafita S, Arús C. 1 H-MRSI pattern perturbation in a mouse glioma: the effects of acute hyperglycemia and moderate hypothermia. NMR Biomed. 2010;23(1):23-33.
Simões RV, García-Martín ML, Cerdán S, Arús C. Perturbation of mouse glioma MRS pattern by induced acute hyperglycemia. NMR Biomed. 2008;21(3):251-264.
Ortega-Martorell S, Ruiz H, Vellido A, et al. A novel semi-supervised methodology for extracting tumor type-specific MRS sources in human brain data. Monleon D, ed. PLoS One. 2013;8(12):e83773.
Ortega-Martorell S, Lisboa PJG, Vellido A, et al. Convex non-negative matrix factorization for brain tumor delimitation from MRSI data. Monleon D, ed. PLoS One. 2012;7(10):e47824.
Delgado-Goñi T, Ortega-Martorell S, Ciezka M, et al. MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR Biomed. 2016;29(6):732-743.
Ferrer-Font L, Villamañan L, Arias-Ramos N, et al. Targeting protein kinase CK2: evaluating CX-4945 potential for GL261 glioblastoma therapy in immunocompetent mice. Pharmaceuticals. 2017;10(4):24.
Ferrer-Font L, Arias-Ramos N, Lope-Piedrafita S, et al. Metronomic treatment in immunocompetent preclinical GL261 glioblastoma: effects of cyclophosphamide and temozolomide. NMR Biomed. 2017;30(9):1-12.
Ciezka M, Acosta M, Herranz C, et al. Development of a transplantable glioma tumour model from genetically engineered mice: MRI/MRS/MRSI characterisation. J Neurooncol. 2016;129(1):67-76.
Karman J, Ling C, Sandor M, Fabry Z. Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol. 2004;173(4):2353-2361.
Kim T-G, Kim C-H, Park J-S, et al. Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin Vaccine Immunol. 2010;17(1):143-153.
Curtin JF, Liu N, Candolfi M, et al. HMGB1 mediates endogenous TLR2 activation and brain tumor regression. Weil R, ed. PLoS Med. 2009;6(1):e1000010.
Roesch S, Rapp C, Dettling S, Herold-Mende C. When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int J Mol Sci. 2018;19(2):436.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793-800.
Hanson HL, Donermeyer DL, Ikeda H, et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity. 2000;13(2):265-276.
Samanta D, Park Y, Ni X, et al. Chemotherapy induces enrichment of CD47 + /CD73 +/PDL1 + immune evasive triple-negative breast cancer cells. Proc Natl Acad Sci USA. 2018;115(6):E1239-E1248.
Wu J, Jordan M, Waxman DJ. Metronomic cyclophosphamide activation of anti-tumor immunity: tumor model, mouse host, and drug schedule dependence of gene responses and their upstream regulators. BMC Cancer. 2016;16(1):623.
Schiavoni G, Sistigu A, Valentini M, et al. Cyclophosphamide synergizes with Type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 2011;71(3):768-778.
Dai B, Qi N, Li J, Zhang G. Temozolomide combined with PD-1 Antibody therapy for mouse orthotopic glioma model. Biochem Biophys Res Commun. 2018;501(4):871-876.
Gilbert MR, Wang M, Aldape KD, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol. 2013;31(32):4085-4091.
Szatmári T, Lumniczky K, Désaknai S, et al. Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci. 2006;97(6):546-553.
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197-218.

Auteurs

Shuang Wu (S)

Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

Pilar Calero-Pérez (P)

Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain.

Lucia Villamañan (L)

Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

Nuria Arias-Ramos (N)

Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain.

Martí Pumarola (M)

Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain.
Unit of Murine and Comparative Pathology, Department of Animal Medicine and Animal Surgery, Veterinary Faculty, UAB, Cerdanyola del Vallès, Spain.

Sandra Ortega-Martorell (S)

Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK.

Margarida Julià-Sapé (M)

Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain.
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

Carles Arús (C)

Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain.
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

Ana Paula Candiota (AP)

Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain.
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH