Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
received:
26
01
2019
accepted:
26
09
2019
entrez:
17
12
2019
pubmed:
17
12
2019
medline:
10
5
2020
Statut:
epublish
Résumé
Spatially continuous data on functional diversity will improve our ability to predict global change impacts on ecosystem properties. We applied methods that combine imaging spectroscopy and foliar traits to estimate remotely sensed functional diversity in tropical forests across an Amazon-to-Andes elevation gradient (215 to 3537 m). We evaluated the scale dependency of community assembly processes and examined whether tropical forest productivity could be predicted by remotely sensed functional diversity. Functional richness of the community decreased with increasing elevation. Scale-dependent signals of trait convergence, consistent with environmental filtering, play an important role in explaining the range of trait variation within each site and along elevation. Single- and multitrait remotely sensed measures of functional diversity were important predictors of variation in rates of net and gross primary productivity. Our findings highlight the potential of remotely sensed functional diversity to inform trait-based ecology and trait diversity-ecosystem function linkages in hyperdiverse tropical forests.
Identifiants
pubmed: 31840057
doi: 10.1126/sciadv.aaw8114
pii: aaw8114
pmc: PMC6892629
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
eaaw8114Informations de copyright
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Références
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4033-4038
pubmed: 29666316
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4043-51
pubmed: 27354534
Ecol Evol. 2016 Jul 22;6(16):5674-89
pubmed: 27547346
Ecology. 2008 Aug;89(8):2290-301
pubmed: 18724739
Nat Commun. 2017 Nov 13;8(1):1441
pubmed: 29129931
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13690-6
pubmed: 25225414
New Phytol. 2017 May;214(3):973-988
pubmed: 27349599
Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10850-4
pubmed: 11005859
Ecol Lett. 2010 Jul;13(7):838-48
pubmed: 20482582
Ecology. 2013 Nov;94(11):2392-402
pubmed: 24400491
Science. 1998 Jul 10;281(5374):237-40
pubmed: 9657713
Ecol Lett. 2017 Jun;20(6):730-740
pubmed: 28464375
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20684-9
pubmed: 18093933
Nat Plants. 2016 Mar 02;2:16024
pubmed: 27249357
Trends Ecol Evol. 2016 May;31(5):382-394
pubmed: 26924737
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5604-9
pubmed: 24591585
New Phytol. 2011 Mar;189(4):999-1012
pubmed: 21118261
Ecol Appl. ;24(7):1651-69
pubmed: 29210229
Nature. 2004 Apr 22;428(6985):821-7
pubmed: 15103368
Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1857-61
pubmed: 11038606
Trends Ecol Evol. 2012 Apr;27(4):244-52
pubmed: 22244797
Science. 2017 Jan 27;355(6323):385-389
pubmed: 28126815