Therapeutic effects of an azaphenothiazine derivative in mouse experimental colitis.
Journal
Histology and histopathology
ISSN: 1699-5848
Titre abrégé: Histol Histopathol
Pays: Spain
ID NLM: 8609357
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
pubmed:
14
12
2019
medline:
14
4
2021
entrez:
14
12
2019
Statut:
ppublish
Résumé
Phenothiazines represent a class of compounds of potential therapeutic utility. In this report we evaluated therapeutic value of an azaphenothiazine derivative, 6-acetylaminobutyl-9-chloroquino[3,2-b]benzo[1,4]thiazine (QBT), given intragastrically, in the model of dextran sodium sulfate-induced colitis in C57BL/6 mice using 5-aminosalicylic acid (5-ASA) as a reference drug. Colitis symptoms such as body weight loss, diarrhea and hematochezia (blood in stool) were observed and registered and disease activity index (DAI) was calculated. In addition, weight and cell numbers in the lymphatic organs and histological parameters of the colon wall were analyzed. The effects of QBT on viability of colon epithelial cell lines were also determined. We showed that weight and cell number of draining mesenteric lymph nodes were lower in mice treated with QBT in comparison to their control counterparts. The number of thymocytes, drastically reduced in control mice, was elevated in mice treated with the compounds with a significant effect of 5-ASA. In addition, an abnormal composition of blood cell types was partially corrected in these groups. Histological analysis of the colon revealed that the pathological changes were partially normalized by QBT and even to a higher degree by 5-ASA. In conclusion we demonstrated a therapeutic efficacy of the compound in amelioration of local and systemic pathological changes associated with chemically-induced colitis in mice. A possible mechanism of action of the compound is discussed.
Identifiants
pubmed: 31833559
pii: HH-18-192
doi: 10.14670/HH-18-192
doi:
Substances chimiques
Immunosuppressive Agents
0
Phenothiazines
0
azaphenothiazine
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
691-699Subventions
Organisme : Ministry of Education and Science of Poland
ID : 2014/15/B/NZ7/00867
Références
Ahn H., Kim J., Jeung E.B. and Lee G.S. (2014), Dimethyl sulfoxide inhibits NLRP3 inflammasome activation. Immunobiology 219, 315- 322.
pubmed: 24380723
Argollo M., Fiorino G., Hindryckx P., Peyrin-Biroulet L. and Danese S. (2017). Novel therapeutic targets for inflammatory bowel disease. J. Autoimmun. 85, 103-116
pubmed: 28711286
Artym J., Kochanowska I.E., Kocięba M., Zaczyńska E., Zimecki M., Jeleń M., Morak-Młodawska B. and Pluta K. (2016). Selected azaphenothiazines inhibit delayed type hypersensitivity and carrageenan reaction in mice. Int. Immunopharmacol. 40, 265-268
pubmed: 27632704
Artym J., Kocięba M., Zaczyńska E., Kochanowska I., Zimecki M., Kałas W., Fiedorowicz A., Pawlak A., Strządała L., Jeleń M., MorakMłodawska B., Pluta K., Kaleta-Kuratewicz K., Madej J.P., Kuropka P. and Kuryszko J. (2018a). Topically applied azaphenothiazines inhibit contact sensitivity to oxazolone in mice. Histol. Histopathol. 33 223-236.
pubmed: 28748525
Artym J., Kocięba M., Zaczyńska E., Kochanowska I., Zimecki M., Kałas W., Fiedorowicz A., Pawlak A., Strządała L., Jeleń M., MorakMłodawska B., Pluta K., Kaleta-Kuratewicz K., Madej J.P., Kuropka P. and Kuryszko J. (2018b). Topically applied azaphenothiazines inhibit experimental psoriasis in mice. Int. Immunopharm. 59, 276- 286.
pubmed: 29674255
Casellas F., Papo M., Guarner F., Antolín M., Armengol J.R. and Malagelada J.R. (1994). Intraluminal colonic release of immunoreactive tumour necrosis factor in chronic ulcerative colitis. Clin. Sci. (Lond) 87, 453-458.
pubmed: 7834999
Dieleman L.A., Ridwan B.U., Tennyson G.S., Beagley K.W., Bucy R.P. and Elson C.O. (1994). Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107, 1643-1652
pubmed: 7958674
Fritsch Fredin M., Elgbratt K., Svensson D., Jansson L., Melgar S. and Hultgren Hörnquist E. (2007). Dextran sulfate sodium-induced colitis generates a transient thymic involution - impact on thymocyte subsets. Scand. J. Immunol. 65, 421-429
pubmed: 17444952
Gajendran M., Loganathan P., Catinella A.P. and Hashash J.G. (2018). A comprehensive review and update on Crohn's disease. Dis. Mon. 64, 20-57.
pubmed: 28826742
Jacknowitz A.I. (1980). Ulcerative colitis and its treatment. Am. J. Hosp. Pharm. 37, 1635-1646.
pubmed: 6108713
Jeleń M., Pluta K., Zimecki M., Morak-Młodawska B., Artym J. and Kocięba M. (2013). Synthesis and selected immunological properties of substituted quino[3,2-b]benzo[1,4]thiazines, Eur. J. Med. Chem. 63, 444-456.
pubmed: 23517733
Kanwar J.R., Kanwar R.K., Stathopoulos S., Haggarty N.W., MacGibbon A.K., Palmano K.P., Roy K., Rowan A. and Krissansen G.W. (2016). Comparative activities of milk components in reversing chronic colitis. J. Dairy Sci. 99, 2488-2501.
pubmed: 26805965
Kojouharoff G., Hans W., Obermeier F., Männel D.N., Andus T., Schölmerich J., Gross V. and Falk W. (1997). Neutralization of tumor necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin. Exp. Immunol. 107, 353-358.
pmcid: PMC1904573
pubmed: 9030875
Li Y.M., Wang H.B., Zheng J.G., Bai X.D., Zhao Z.K., Li J.Y. and Hu S. (2015). Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction. World J. Gastroenterol. 21, 10853-10865.
pmcid: PMC4600586
pubmed: 26478676
Melgar S., Karlsson A. and Michaelsson E. (2005). Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not BALB/c mice: correlation between symptoms and inflammation. Am. J. Physiol. Gastrointestinal Liver Physiol. 288, G1328-1338.
pubmed: 15637179
Narula N., Kassam Z., Yuan Y., Colombel J.F., Ponsioen C., Reinisch W. and Moayyedi P. (2017). Systematic review and meta-analysis: fecal microbiota transplantation for treatment of active ulcerative colitis. Inflamm. Bowel Dis. 23, 1702-1709.
pubmed: 28906291
Park Y.H., Kim N., Shim Y.K., Choi Y.J., Nam R.H., Choi Y.J., Ham M.H., Suh J.H., Lee S.M., Lee C.M., Yoon H., Lee H.S. and Lee D.H. (2015). Adequate dextran sodium sulfate-induced colitis model in mice and effective outcome measurement method. J. Cancer Prev. 20, 260-267
pmcid: PMC4699753
pubmed: 26734588
Perse M. and Cerar A. (2012). Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012, 718617.
pmcid: PMC3361365
pubmed: 22665990
Pluta K., Jeleń M., Morak-Młodawska B., Zimecki M., Artym J., Kocięba M. and Zaczyńska E. (2017). Azaphenothiazines – promising phenothiazine derivatives. An insight into nomenclature, synthesis, structure elucidation and biological properties. Eur. J. Med. Chem. 138, 774-806.
pubmed: 28734245
Punchard N.A., Greenfield S.M. and Thompson R.P. (1992). Mechanism of action of 5-aminosalicylic acid. Mediators Inflamm. 1, 151-165.
pmcid: PMC2365334
pubmed: 18475455
Qu T., Wang E., Jin B., Li W., Liu R. and Zhao Z.B. (2017). 5- Aminosalicylic acid inhibits inflammatory responses by suppressing JNK and p38 activity in murine macrophages. Immunopharmacol. Immunotoxicol. 39, 45-53.
pubmed: 28071183
Salaritabar A., Darvishi B., Hadjiakhoondi F., Manayi A., Sureda A., Nabavi S.F., Fitzpatrick L.R., Nabavi S.M. and Bishayee A. (2017). Therapeutic potential of flavonoids in inflammatory bowel disease: a comprehensive review. World J. Gastroenterol. 23, 5097-5114.
pmcid: PMC5537178
pubmed: 28811706
Summers R.W., Elliott D.E., Urban J.F. Jr, Thompson R. and Weinstock J.V. (2005). Trichuris suis therapy in Crohn's disease. Gut 54, 87- 90.
pmcid: PMC1774382
pubmed: 15591509
Troncone E. and Monteleone G. (2017). The safety of non-biological treatments in ulcerative colitis. Expert Opin. Drug. Saf. 16, 779-789.
pubmed: 28608717
Wang L., Ray A., Jiang X., Wang J.Y., Basu S., Liu X., Qian T., He R., Dittel B.N. and Chu Y. (2015). T regulatory cells and B cells cooperate to form a regulatory loop that maintains gut homeostasis and suppresses dextran sulfate sodium-induced colitis. Mucosal Immunol. 8, 1297-1312.
pmcid: PMC4583327
pubmed: 25807185
Wang X., Sun Y., Zhao Y., Ding Y., Zhang X., Kong L., Li Z., Guo Q. and Zhao L. (2016). Oroxyloside prevents dextran sulfate sodiuminduced experimental colitis in mice by inhibiting NF-κB pathway through PPARγ activation. Biochem. Pharmacol. 106, 70-81.
pubmed: 26947454
Yasukawa K., Tokuda H., Tun X., Utsumi H. and Yamada K. (2012). The detrimental effect of nitric oxide on tissue is associated with inflammatory events in the vascular endothelium and neutrophils in mice with dextran sodium sulfate-induced colitis. Free Radic. Res. 46, 1427-1436.
pubmed: 22998024
Yigitler C., Gulec B., Aydogan H., Ozcan A., Kilinc M., Yigit T., Kozak O. and Pekcan M. (2004). Effect of mesalazine, metronidazole and gentamicin on bacterial translocation in experimental colitis. J. Gastroenterol. Hepatol. 19, 1179-1186.
pubmed: 15377297
Zindl C.L., Lai J.F., Lee Y.K., Maynard C.L., Harbour S.N., Ouyang W., Chaplin D.D. and Weaver C.T. (2013). IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis, Proc. Natl. Acad. Sci. USA 110, 12768-12773.
pmcid: PMC3732935
pubmed: 23781104