Meta-analysis of clinical trials with competing time-to-event endpoints.
IPD meta-analysis
cause-specific hazards
competing endpoints
cumulative incidence function
heterogeneity
Journal
Biometrical journal. Biometrische Zeitschrift
ISSN: 1521-4036
Titre abrégé: Biom J
Pays: Germany
ID NLM: 7708048
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
28
03
2019
revised:
27
10
2019
accepted:
04
11
2019
pubmed:
10
12
2019
medline:
2
6
2021
entrez:
10
12
2019
Statut:
ppublish
Résumé
Recommendations for the analysis of competing risks in the context of randomized clinical trials are well established. Meta-analysis of individual patient data (IPD) is the gold standard for synthesizing evidence for clinical interpretation based on multiple studies. Surprisingly, no formal guidelines have been yet proposed to conduct an IPD meta-analysis with competing risk endpoints. To fill this gap, this work details (i) how to handle the heterogeneity between trials via a stratified regression model for competing risks and (ii) that the usual metrics of inconsistency to assess heterogeneity can readily be employed. Our proposal is illustrated by the re-analysis of a recently published meta-analysis in nasopharyngeal carcinoma, aiming at quantifying the benefit of the addition of chemotherapy to radiotherapy on each competing endpoint.
Identifiants
pubmed: 31815321
doi: 10.1002/bimj.201900103
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
712-723Informations de copyright
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
Andersen, P. K., & Keiding, N. (2012). Interpretability and importance of functionals in competing risks and multistate models. Statistics in Medicine, 31 (11-12), 1074-1088.
Blanchard, P., Lee, A., Marguet, S., Leclercq, J., Ng, W. T., Ma, J., MAC-NPC Collaborative Group (2015). Chemotherapy and radiotherapy in nasopharyngeal carcinoma: An update of the MAC-NPC meta-analysis. The Lancet Oncology, 16 (6), 645-655.
Bonofiglio, F., Beyersmann, J., Schumacher, M., Koller, M., & Schwarzer, G. (2016). Meta-analysis for aggregated survival data with competing risks: A parametric approach using cumulative incidence functions. Research Synthesis Methods, 7 (3), 282-293.
Burke, D. L., Ensor, J., & Riley, R. D. (2017). Meta-analysis using individual participant data: One-stage and two-stage approaches, and why they may differ. Statistics in Medicine, 36 (5), 855-875.
Cortese, G., Gerds, T. A., & Andersen, P. K. (2013). Comparing predictions among competing risks models with time-dependent covariates. Statistics in Medicine, 32 (18), 3089-3101.
Fine, J. P., & Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94 (446), 496-509.
Hardy, R. J., & Thompson, S. G. (1998). Detecting and describing heterogeneity in meta-analysis. Statistics in Medicine, 17 (8), 841-856.
Higgins, J. P., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions, volume 4. New York: John Wiley & Sons.
Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21 (11), 1539-1558.
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327 (7414), 557.
Katsahian, S., & Boudreau, C. (2011). Estimating and testing for center effects in competing risks. Statistics in Medicine, 30 (13), 1608-1617.
Latouche, A., Allignol, A., Beyersmann, J., Labopin, M., & Fine, J. P. (2013). A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. Journal of Clinical Epidemiology, 66 (6), 648-653.
Riley, R. D., Price, M. J., Jackson, D., Wardle, M., Gueyffier, F., Wang, J., Staessen, J. A., & White, I. R. (2015). Multivariate meta-analysis using individual participant data. Research Synthesis Methods, 6 (2), 157-174.
Rotolo, F., & Michiels, S. (2014). Testing the treatment effect on competing causes of death in oncology clinical trials. BMC Medical Research Methodology, 14 (1), 72.
Rotolo, F., Paoletti, X., Burzykowski, T., Marc, B., & Michiels, S. (2017). A Poisson approach to the validation of failure time surrogate endpoints in individual patient data meta-analyses. Statistical Methods in Medical Research, 28 (1), 170-183.
Schwarzer, G. (2007). meta: An R package for meta-analysis. R News, 7 (3), 40-45.
Simmonds, M. C., Higgins, J. P., Stewart, L. A., Tierney, J. F., Clarke, M. J., & Thompson, S. G. (2005). Meta-analysis of individual patient data from randomized trials: A review of methods used in practice. Clinical Trials, 2 (3), 209-217.
Therneau, T. M., & Lumley, T. (2014). Package ‘survival’. Survival analysis Published on CRAN.
Zhou, B., Fine, J., & Laird, G. (2013). Goodness-of-fit test for proportional subdistribution hazards model. Statistics in Medicine, 32 (22), 3804-3811.
Zhou, B., Fine, J., Latouche, A., & Labopin, M. (2012). Competing risks regression for clustered data. Biostatistics, 13 (3), 371-383.
Zhou, B., & Latouche, A. (2013). crrSC: Competing risks regression for Stratified and Clustered data. R package version 1.1.
Zhou, B., Latouche, A., Rocha, V., & Fine, J. (2011). Competing risks regression for stratified data. Biometrics, 67 (2), 661-670.