Serratia liquefaciens FG3 isolated from a metallophyte plant sheds light on the evolution and mechanisms of adaptive traits in extreme environments.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 11 2019
29 11 2019
Historique:
received:
18
07
2019
accepted:
31
10
2019
entrez:
1
12
2019
pubmed:
1
12
2019
medline:
18
11
2020
Statut:
epublish
Résumé
Serratia liquefaciens strain FG3 (SlFG3), isolated from the flower of Stachytarpheta glabra in the Brazilian ferruginous fields, has distinctive genomic, adaptive, and biotechnological potential. Herein, using a combination of genomics and molecular approaches, we unlocked the evolution of the adaptive traits acquired by S1FG3, which exhibits the second largest chromosome containing the largest conjugative plasmids described for Serratia. Comparative analysis revealed the presence of 18 genomic islands and 311 unique protein families involved in distinct adaptive features. S1FG3 has a diversified repertoire of genes associated with Nonribosomal peptides (NRPs/PKS), a complete and functional cluster related to cellulose synthesis, and an extensive and functional repertoire of oxidative metabolism genes. In addition, S1FG3 possesses a complete pathway related to protocatecuate and chloroaromatic degradation, and a complete repertoire of genes related to DNA repair and protection that includes mechanisms related to UV light tolerance, redox process resistance, and a laterally acquired capacity to protect DNA using phosphorothioation. These findings summarize that SlFG3 is well-adapted to different biotic and abiotic stress situations imposed by extreme conditions associated with ferruginous fields, unlocking the impact of the lateral gene transfer to adjust the genome for extreme environments, and providing insight into the evolution of prokaryotes.
Identifiants
pubmed: 31784663
doi: 10.1038/s41598-019-54601-4
pii: 10.1038/s41598-019-54601-4
pmc: PMC6884506
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
18006Références
Appl Biochem Biotechnol. 2015 Jun;176(4):1162-73
pubmed: 25926011
PLoS One. 2013 Oct 11;8(10):e76151
pubmed: 24146831
Microbiol Res. 1999 Dec;154(3):233-9
pubmed: 10652786
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
Genome Announc. 2014 Aug 21;2(4):
pubmed: 25146134
Front Microbiol. 2018 Jul 23;9:1638
pubmed: 30083146
Nat Rev Microbiol. 2010 Jan;8(1):15-25
pubmed: 19946288
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361
pubmed: 27899662
Genome Announc. 2015 May 28;3(3):
pubmed: 26021922
PLoS One. 2013;8(2):e57794
pubmed: 23460907
Trends Microbiol. 2015 Sep;23(9):545-57
pubmed: 26077867
J Bacteriol. 2009 Jan;191(1):91-9
pubmed: 18978054
Genome Announc. 2016 Jun 16;4(3):
pubmed: 27313299
Appl Environ Microbiol. 2005 Dec;71(12):8008-15
pubmed: 16332780
Environ Microbiol. 2011 May;13(5):1342-56
pubmed: 21507177
Free Radic Res. 2006 Jun;40(6):597-605
pubmed: 16753837
Stand Genomic Sci. 2016 Sep 06;11(1):61
pubmed: 27602183
Mol Biol Evol. 2000 Apr;17(4):540-52
pubmed: 10742046
Nucleic Acids Res. 2002 Feb 15;30(4):866-75
pubmed: 11842097
J Bacteriol. 1997 Dec;179(24):7671-8
pubmed: 9401024
Genome Announc. 2016 Jan 21;4(1):
pubmed: 26798087
Proc Natl Acad Sci U S A. 1985 Sep;82(18):6231-5
pubmed: 3862129
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W347-52
pubmed: 21672955
Comput Struct Biotechnol J. 2016 May 07;14:200-6
pubmed: 27293536
J Nat Prod. 2011 Oct 28;74(10):2122-7
pubmed: 21977916
Front Microbiol. 2017 Feb 10;8:172
pubmed: 28239369
Mol Plant Microbe Interact. 2005 Jun;18(6):533-8
pubmed: 15986922
BMC Genomics. 2015 Mar 17;16:199
pubmed: 25879448
J Bacteriol. 2015 Jun;197(11):1952-62
pubmed: 25825430
Sci Rep. 2017 Jun 14;7(1):3516
pubmed: 28615635
Sci Rep. 2014 Oct 16;4:6642
pubmed: 25319634
Mol Plant Pathol. 2010 Sep;11(5):705-19
pubmed: 20696007
PLoS One. 2017 Feb 10;12(2):e0171534
pubmed: 28187139
BMC Genomics. 2002 Mar 21;3:8
pubmed: 11914131
J Bacteriol. 2006 Feb;188(4):1551-66
pubmed: 16452439
Sci Rep. 2015 Mar 03;5:8695
pubmed: 25733079
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46
pubmed: 21672958
Nat Chem Biol. 2007 Jul;3(7):420-2
pubmed: 17558398
Mar Genomics. 2014 Oct;17:25-33
pubmed: 24906178
Genome Announc. 2016 Aug 11;4(4):
pubmed: 27516523
Plant Physiol. 2014 Apr;164(4):2167-83
pubmed: 24501001
Front Plant Sci. 2017 Dec 19;8:2141
pubmed: 29312396
Cell. 2014 Jul 17;158(2):412-421
pubmed: 25036635
J Bacteriol. 2004 Jul;186(13):4192-8
pubmed: 15205421
Chemistry. 2014 Dec 22;20(52):17478-87
pubmed: 25351611
Crit Rev Microbiol. 1986;13(3):281-307
pubmed: 3533427
J Biol Chem. 2004 Dec 31;279(53):55073-9
pubmed: 15489505
J Exp Bot. 2015 Jun;66(11):3001-10
pubmed: 25934986
Genome Announc. 2013 Aug 15;1(4):
pubmed: 23950115
Biochemistry. 2010 Jun 22;49(24):4934-44
pubmed: 20459084
Gene. 2003 Jul 17;312:151-63
pubmed: 12909351
Nucleic Acids Res. 2012 Oct;40(18):9115-24
pubmed: 22772986
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Antonie Van Leeuwenhoek. 2013 Sep;104(3):321-30
pubmed: 23812968
J Biotechnol. 2015 Nov 20;214:43-4
pubmed: 26376471
Biochim Biophys Acta. 2004 Nov 11;1694(1-3):149-61
pubmed: 15546664