No support for the emergence of lichens prior to the evolution of vascular plants.
carbon cycle
fungi
terrestrial ecosystems
weathering
Journal
Geobiology
ISSN: 1472-4669
Titre abrégé: Geobiology
Pays: England
ID NLM: 101185472
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
28
06
2019
revised:
28
08
2019
accepted:
05
10
2019
pubmed:
16
11
2019
medline:
18
3
2020
entrez:
16
11
2019
Statut:
ppublish
Résumé
The early-successional status of lichens in modern terrestrial ecosystems, together with the role lichen-mediated weathering plays in the carbon cycle, have contributed to the long and widely held assumption that lichens occupied early terrestrial ecosystems prior to the evolution of vascular plants and drove global change during this time. Their poor preservation potential and the classification of ambiguous fossils as lichens or other fungal-algal associations have further reinforced this view. As unambiguous fossil data are lacking to demonstrate the presence of lichens prior to vascular plants, we utilize an alternate approach to assess their historic presence in early terrestrial ecosystems. Here, we analyze new time-calibrated phylogenies of ascomycete fungi and chlorophytan algae, that intensively sample lineages with lichen symbionts. Age estimates for several interacting clades show broad congruence and demonstrate that fungal origins of lichenization postdate the earliest tracheophytes. Coupled with the absence of unambiguous fossil data, our work finds no support for lichens having mediated global change during the Neoproterozoic-early Paleozoic prior to vascular plants. We conclude by discussing our findings in the context of Neoproterozoic-Paleozoic terrestrial ecosystem evolution and the paleoecological context in which vascular plants evolved.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3-13Subventions
Organisme : Pritzker School of Medicine
Pays : International
Organisme : Field Museum
Pays : International
Organisme : Botanical Society of America
Pays : International
Informations de copyright
© 2019 John Wiley & Sons Ltd.
Références
Ahmadjian, V. (1993). The lichen symbiosis. New York, NY: John Wiley & Sons Ltd.
Algeo, T. J., & Scheckler, S. E. (1998). Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1365), 113-130. https://doi.org/10.1098/rstb.1998.0195
Amo de Paz, G., Cubas, P., Divakar, P. K., Lumbsch, H. T., & Crespo, A. (2011). Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS ONE, 6(12), e28161. https://doi.org/10.1371/journal.pone.0028161
Antcliffe, J. B., & Hancy, A. D. (2013). Reply to Retallack (2013): Ediacaran characters. Evolution & Development, 15(6), 389-392. https://doi.org/10.1111/ede.12048
Ascaso, C., & Galvan, J. (1976). Studies on the pedogenetic action of lichen acids. Pedobiologia, 16, 321-331.
Banfield, J. F., Barker, W. W., Welch, S. A., & Taunton, A. (1999). Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences, 96(7), 3404-3411. https://doi.org/10.1073/pnas.96.7.3404
Beaulieu, J. M., & O’Meara, B. C. (2017). CorHMM: analysis of binary character evolution.
Beaulieu, J. M., O’Meara, B. C., & Donoghue, M. J. (2013). Identifying hidden rate changes in the evolution of a binary morphological character: The evolution of plant habit in campanulid angiosperms. Systematic Biology, 62(5), 725-737. https://doi.org/10.1093/sysbio/syt034
Beimforde, C., Feldberg, K., Nylinder, S., Rikkinen, J., Tuovila, H., Dörfelt, H., … Schmidt, A. R. (2014). Estimating the phanerozoic history of the ascomycota lineages: combining fossil and molecular data. Molecular Phylogenetics and Evolution, 78, 386-398. https://doi.org/10.1016/j.ympev.2014.04.024
Belnap, J. (1995). Surface disturbances: Their role in accelerating desertification. Environmental Monitoring and Assessment, 37(1-3), 39-57. https://doi.org/10.1007/BF00546879
Belnap, J. (2006). The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes, 20(15), 3159-3178. https://doi.org/10.1002/hyp.6325
Berner, R. A. (1992). Weathering, plants, and the long-term carbon cycle. Geochimica Et Cosmochimica Acta, 56(8), 3225-3231. https://doi.org/10.1016/0016-7037(92)90300-8
Berner, R. A. (1998). The carbon cycle and carbon dioxide over Phanerozoic time: The role of land plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1365), 75-82. https://doi.org/10.1098/rstb.1998.0192
Berner, R. A. (2004). The Phanerozoic carbon cycle: CO2 and O2, 1st ed. Oxford, UK: Oxford University Press.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., … Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537
Chen, J., Blume, H.-P., & Beyer, L. (2000). Weathering of rocks induced by lichen colonization-A review. Catena, 39(2), 121-146. https://doi.org/10.1016/S0341-8162(99)00085-5
Church, A. H. (1921). The lichen as transmigrant. The Journal of Botany, British and Foreign, 59(7-13), 40-46.
de Bary, A. (1879). Die Erscheinung der Symbiose. Strassbourg, France: Verlag von Karl J. Trübner.
De Wever, A., Leliaert, F., Verleyen, E., Vanormelingen, P., der Gucht, K. V., Hodgson, D. A., Vyverman, W. (2009). Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proceedings of the Royal Society B: Biological Sciences, 276(1673), 3591-3599. https://doi.org/10.1098/rspb.2009.0994
Dornburg, A., Beaulieu, J. M., Oliver, J. C., & Near, T. J. (2011). Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation. Systematic Biology, 60(4), 519-527. https://doi.org/10.1093/sysbio/syr019
Edwards, D., Axe, L., & Honegger, R. (2013). Contributions to the diversity in cryptogamic covers in the mid-Palaeozoic: Nematothallus revisited. Botanical Journal of the Linnean Society, 173(4), 505-534. https://doi.org/10.1111/boj.12119
Edwards, D., Honegger, R., Axe, L., & Morris, J. L. (2018). Anatomically preserved Silurian ‘nematophytes’ from the Welsh Borderland (UK). Botanical Journal of the Linnean Society, 187(2), 272-291. https://doi.org/10.1093/botlinnean/boy022
Eriksson, O. E. (2005). Origins and evolution of ascomycota-The protolichenes hypothesis. Svensk Mykologisk Tidskrift, 26, 30-33.
Ertz, D., & Diederich, P. (2015). Dismantling Melaspileaceae: A first phylogenetic study of Buelliella, Hemigrapha, Karschia, Labrocarpon and Melaspilea. Fungal Diversity, 71(1), 141-164. https://doi.org/10.1007/s13225-015-0321-1
Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R. A., Henrissat, B., … Hibbett, D. S. (2012). The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336(6089), 1715-1719. https://doi.org/10.1126/science.1221748
Frank, A. B. (1877). Über die geologischen Verhältnisse des Thallus einiger Krustenflechten (Cohn’s). Beiträge zur Biologie der Pflanzen, 2, 123-200.
Friedl, T., & Bhattacharya, D. (2002). In J. Seckbach (Ed.), Symbiosis: Mechanisms and model systems (pp. 341-357). https://doi.org/10.1007/0-306-48173-1_21
Friedl, T., & Büdel, B. (2008). Photobionts. In T. H. I. Nash (Ed.), Lichen biology, 2nd ed. (pp. 9-26). Cambridge, UK: Cambridge University Press.
Gadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3-49. https://doi.org/10.1016/j.mycres.2006.12.001
Gargas, A., DePriest, P. T., Grube, M., & Tehler, A. (1995). Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science, 268(5216), 1492-1495. https://doi.org/10.1126/science.7770775
Gensel, P. G. (2008). The earliest land plants. Annual Review of Ecology, Evolution, and Systematics, 39(1), 459-477. https://doi.org/10.1146/annurev.ecolsys.39.110707.173526
Golubic, S., & Schneider, J. (2003). Microbial endoliths as internal biofilms. In W. E. Krumbein, D. M. Paterson, & G. A. Zavarzin (Eds.), Fossil and Recent Biofilms (pp. 249-263). Dordrecht, The Netherlands: Springer Science + Business Media. https://doi.org/10.1007/978-94-017-0193-8_16
Graham, L. E., Trest, M. T., Cook, M. E., & Dunn, M. T. (2017). Acetolysis resistance of modern fungi: Testing attributions of enigmatic Proterozoic and Early Paleozoic fossils. International Journal of Plant Sciences, 178, 330-339. https://doi.org/10.1086/690280
Gray, J., & Boucot, A. J. (1977). Early vascular land plants: Proof and conjecture. Lethaia, 10(2), 145-174. https://doi.org/10.1111/j.1502-3931.1977.tb00604.x
Gray, J., & Shear, W. (1992). Early life on land. American Scientist, 80, 444-456.
Grube, M., & Hawksworth, D. L. (2007). Trouble with lichen: The re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycological Research, 111(9), 1116-1132. https://doi.org/10.1016/j.mycres.2007.04.008
Gueidan, C., Ruibal, C., de Hoog, G. S., & Schneider, H. (2011). Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biology, 115(10), 987-996. https://doi.org/10.1016/j.funbio.2011.04.002
Gueidan, C., Villaseñor, C. R., de Hoog, G. S., Gorbushina, A. A., Untereiner, W. A., & Lutzoni, F. (2008). A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Studies in Mycology, 61, 111-119. https://doi.org/10.3114/sim.2008.61.11
Guiry, M. D., & Guiry, G. M. (2019). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved from http://www.algaebase.org.
Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., & Hedges, S. B. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293(5532), 1129-1133. https://doi.org/10.1126/science.1061457
Högnabba, F., Stenroos, S., Thell, A., & Myllys, L. (2009). Evolution of cyanobacterial symbioses in Ascomycota. Bibliotheca Lichenologica, 99, 163-184.
Honegger, R. (2009). Lichen-forming fungi and their photobionts. In H. B. Deising (Ed.), Plant relationships (pp. 307-333). https://doi.org/10.1007/978-3-540-87407-2_16
Honegger, R., Edwards, D., & Axe, L. (2013). The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytologist, 197(1), 264-275. https://doi.org/10.1111/nph.12009
Jahns, H. M. (1988). The lichen thallus. In M. Galun (Ed.), CRC handbook of lichenology, Vol. 1 (pp. 95-143). Boca Raton, FL: CRC Press.
James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., … Vilgalys, R. (2006). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 443(7113), 818-822. https://doi.org/10.1038/nature05110
Karatygin, I. V., Snigirevskaya, N. S., & Vikulin, S. V. (2009). The most ancient terrestrial lichen Winfrenatia reticulata: A new find and new interpretation. Paleontological Journal, 43(1), 107-114. https://doi.org/10.1134/S0031030109010110
Kennedy, M., Droser, M., Mayer, L. M., Pevear, D., & Mrofka, D. (2006). Late Precambrian oxygenation: Inception of the clay mineral factory. Science, 311(5766), 1446-1449. https://doi.org/10.1126/science.1118929
Knauth, L. P., & Kennedy, M. J. (2009). The late Precambrian greening of the Earth. Nature, 460(7256), 728-732. https://doi.org/10.1038/nature08213
Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., Buscot, F., … Martin, F. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47(4), 410-415. https://doi.org/10.1038/ng.3223
Larson, D. W. (1987). The absorption and release of water by lichens. Bibliotheca Lichenologica, 25, 351-360.
Lenton, T. M., Crouch, M., Johnson, M., Pires, N., & Dolan, L. (2012). First plants cooled the Ordovician. Nature Geoscience, 5(2), 86-89. https://doi.org/10.1038/ngeo1390
Lenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J. W., Ozaki, K., Saltzman, M. R., & Porada, P. (2016). Earliest land plants created modern levels of atmospheric oxygen. Proceedings of the National Academy of Sciences, 113(35), 9704-9709. https://doi.org/10.1073/pnas.1604787113
Lenton, T. M., & Daines, S. J. (2017). Matworld - the biogeochemical effects of early life on land. New Phytologist, 215(2), 531-537. https://doi.org/10.1111/nph.14338
Lindsay, W. L. (1856). A popular history of British lichens. London, UK: Lovell Reeve.
López-Bautista, J. M., Waters, D. A., & Chapman, R. L. (2002). The Trentepohliales revisted. Constancea, 83(1), 1-23. http://ucjeps.berkeley.edu/constancea/83/lopez_etal/trentepohliales.html.
Lücking, R., Lumbsch, H. T., Di Stéfano, J. F., Lizano, D., Carranza, J., Bernecker, A., … Umaña, L. (2008). Eremithallus costaricensis (Ascomycota: Lichinomycetes: Eremithallales), a new fungal lineage with a novel lichen symbiotic lifestyle discovered in an urban relict forest in Costa Rica. Symbiosis, 46, 161-170.
Lücking, R., & Nelsen, M. P. (2018). Ediacarans, protolichens, and lichen-derived Penicillium: A critical reassessment of the evolution of lichenization in fungi. In M. Krings, C. J. Harper, N. R. Cúneo, & G. W. Rothwell (Eds.), Transformative paleobotany (pp. 551-590). London, UK: Academic Press. https://doi.org/10.1016/B978-0-12-813012-4.00023-1
Lumbsch, H. T., & Rikkinen, J. (2017). Evolution of lichens. In Mycology. The fungal community (Vols. 1-0, pp. 53-62). https://doi.org/10.1201/9781315119496-5
Lumbsch, H. T., Zimmermann, D. G., & Schmitt, I. (2009). Phylogenetic position of ephemeral lichens in Thelocarpaceae and Vezdaeaceae (Ascomycota). Bibliotheca Lichenologica, 100, 389-398.
Lutzoni, F., Nowak, M. D., Alfaro, M. E., Reeb, V., Miadlikowska, J., Krug, M., … Magallón, S. (2018). Contemporaneous radiations of fungi and plants linked to symbiosis. Nature Communications, 9(1), 5451. https://doi.org/10.1038/s41467-018-07849-9
Lutzoni, F., Pagel, M., & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411(6840), 937-940. https://doi.org/10.1038/35082053
Malavasi, V., Škaloud, P., Rindi, F., Tempesta, S., Paoletti, M., & Pasqualetti, M. (2016). DNA-based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS ONE, 11(3), e0151137. https://doi.org/10.1371/journal.pone.0151137
Marshall, C. R. (2008). A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. The American Naturalist, 171(6), 726-742. https://doi.org/10.1086/587523
Matsunaga, K. K. S., Stockey, R. A., & Tomescu, A. M. F. (2013). Honeggeriella complexa gen. Et sp. Nov., a heteromerous lichen from the Lower Cretaceous of Vancouver Island (British Columbia, Canada). American Journal of Botany, 100(2), 450-459. https://doi.org/10.3732/ajb.1200470
Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., … Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. https://doi.org/10.1016/j.ympev.2014.04.003
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, 1-8. https://doi.org/10.1109/GCE.2010.5676129
Morris, J. L., Puttick, M. N., Clark, J. W., Edwards, D., Kenrick, P., Pressel, S., … Donoghue, P. C. J. (2018). The timescale of early land plant evolution. Proceedings of the National Academy of Sciences, 115(10), E2274-E2283. https://doi.org/10.1073/pnas.1719588115
Mukhtar, A., Garty, J., & Galun, M. (1994). Does the lichen alga Trebouxia occur free-living in nature: Further immunological evidence. Symbiosis, 17(2/3), 247-253.
Nelsen, M. P., DiMichele, W. A., Peters, S. E., & Boyce, C. K. (2016). Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Sciences, 113(9), 2442-2447. https://doi.org/10.1073/pnas.1517943113
Nelsen, M. P., Lücking, R., Grube, M., Mbatchou, J. S., Muggia, L., Plata, E. R., & Lumbsch, H. T. (2009). Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Studies in Mycology, 64, 135-144. https://doi.org/10.3114/sim.2009.64.07
Nelsen, M. P., Lücking, R., Mbatchou, J. S., Andrew, C. J., Spielmann, A. A., & Lumbsch, H. T. (2011). New insights into relationships of lichen-forming Dothideomycetes. Fungal Diversity, 51(1), 155-162. https://doi.org/10.1007/s13225-011-0144-7
Nelsen, M. P., Rivas Plata, E., Andrew, C. J., Lücking, R., & Lumbsch, H. T. (2011). Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. Journal of Phycology, 47(2), 282-290. https://doi.org/10.1111/j.1529-8817.2011.00962.x
Newton, A. E., Wikström, N., Bell, N., Lowe Forrest, L., & Ignatov, M. S. (2007). In A. E. Newton, & R. S. Tangney (Eds.), Pleurocarpous mosses-Systematics and evolution (pp. 337-366). Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781420005592.ch17
Olsson-Francis, K., Simpson, A. E., Wolff-Boenisch, D., & Cockell, C. S. (2012). The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite. Geobiology, 10(5), 434-444. https://doi.org/10.1111/j.1472-4669.2012.00333.x
Ortiz-Álvarez, R., de los Ríos, A., Fernández-Mendoza, F., Torralba-Burrial, A., & Pérez-Ortega, S. (2015). Ecological specialization of two photobiont-specific maritime cyanolichen species of the genus Lichina. PLoS ONE, 10(7), e0132718. https://doi.org/10.1371/journal.pone.0132718
Pagani, M., Caldeira, K., Berner, R., & Beerling, D. J. (2009). The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature, 460(7251), 85-88. https://doi.org/10.1038/nature08133
Pérez-Ortega, S., Garrido-Benavent, I., Grube, M., Olmo, R., & de los Ríos, A. (2016). Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). Fungal Diversity, 80(1), 285-300. https://doi.org/10.1007/s13225-016-0361-1
Poinar, G. O., Peterson, E. B., & Platt, J. L. (2000). Fossil Parmelia in new World Amber. The Lichenologist, 32(3), 263-269. https://doi.org/10.1006/lich.1999.0258
Porada, P., Lenton, T. M., Pohl, A., Weber, B., Mander, L., Donnadieu, Y., … Kleidon, A. (2016). High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nature Communications, 7, 12113. https://doi.org/10.1038/ncomms12113
Porada, P., Weber, B., Elbert, W., Pöschl, U., & Kleidon, A. (2013). Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences, 10(11), 6989-7033. https://doi.org/10.5194/bg-10-6989-2013
Printzen, C., Cezanne, R., Eichler, M., & Lumbsch, H. T. (2012). The genera Aphanopsis and Steinia represent basal lineages within Leotiomyceta. Bibliotheca Lichenologica, 108, 177-186.
Quirk, J., Leake, J. R., Johnson, D. A., Taylor, L. L., Saccone, L., & Beerling, D. J. (2015). Constraining the role of early land plants in Palaeozoic weathering and global cooling. Proceedings of the Royal Society B, 282(1813), 20151115. https://doi.org/10.1098/rspb.2015.1115
Reeb, V., Lutzoni, F., & Roux, C. (2004). Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution, 32(3), 1036-1060. https://doi.org/10.1016/j.ympev.2004.04.012
Rickards, R. B. (2000). The age of the earliest club mosses: The Silurian Baragwanathia flora in Victoria, Australia. Geological Magazine, 137(2), 207-209. Retrieved from https://www.cambridge.org/core/journals/geological-magazine/article/age-of-the-earliest-club-mosses-the-silurian-baragwanathia-flora-in-victoria-australia/6A0606377BDB7E3E564153CEE415D815
Rindi, F., & López-Bautista, J. M. (2008). Diversity and ecology of Trentepohliales (Ulvophyceae, Chlorophyta) in French Guiana. Cryptogamie Algologie, 29(1), 13-43. Retrieved from http://www.cryptogamie.com/pagint/recherche/affich_art.php?cxml:id=211
Robinson, J. M. (1990). Lignin, land plants, and fungi: Biological evolution affecting Phanerozoic oxygen balance. Geology, 18(7), 607-610. https://doi.org/10.1130/0091-7613(1990)018<0607:LLPAFB>2.3.CO;2
Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A., & Steemans, P. (2010). Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytologist, 188(2), 365-369. https://doi.org/10.1111/j.1469-8137.2010.03433.x
Rutherford, W. A., Painter, T. H., Ferrenberg, S., Belnap, J., Okin, G. S., Flagg, C., & Reed, S. C. (2017). Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Scientific Reports, 7, 44188. https://doi.org/10.1038/srep44188
Sanders, W. B., Pérez-Ortega, S., Nelsen, M. P., Lücking, R., & de los Ríos, A., (2016). Heveochlorella (Trebouxiophyceae): A little-known genus of unicellular green algae outside the Trebouxiales emerges unexpectedly as a major clade of lichen photobionts in foliicolous communities. Journal of Phycology, 52(5), 840-853. https://doi.org/10.1111/jpy.12446
Schoch, C. L., Sung, G.-H., López-Giráldez, F., Townsend, J. P., Miadlikowska, J., Hofstetter, V., … Spatafora, J. W. (2009). The ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology, 58(2), 224-239. https://doi.org/10.1093/sysbio/syp020
Schwartzman, D. W. (1999). Life, temperature, and the earth. New York, NY: Columbia University Press.
Schwartzman, D. W., & Volk, T. (1989). Biotic enhancement of weathering and the habitability of Earth. Nature, 340(6233), 457-460. https://doi.org/10.1038/340457a0
Scott, G. A. M. (1982). Desert bryophytes. In A. J .E. Smith (Ed.), Bryophyte ecology (pp. 105-122). London, UK: Chapman and Hall. https://doi.org/10.1007/978-94-009-5891-3_4
Shih, P. M., Hemp, J., Ward, L. M., Matzke, N. J., & Fischer, W. W. (2017). Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology, 15(1), 19-29. https://doi.org/10.1111/gbi.12200
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758-771. https://doi.org/10.1080/10635150802429642
Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., & Beerling, D. J. (2009). Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiology, 7(2), 171-191. https://doi.org/10.1111/j.1472-4669.2009.00194.x
Taylor, T., Hass, H., & Kerp, H. (1997). A cyanolichen from the Lower Devonian Rhynie chert. American Journal of Botany, 84(7), 992. https://doi.org/10.2307/2446290
Tomescu, A. M. F., Klymiuk, A. A., Matsunaga, K. K. S., Bippus, A. C., & Shelton, G. W. K. (2016). Microbes and the fossil record: selected topics in paleomicrobiology. In C. J. Hurst (Ed.), Their world: A diversity of microbial environments (pp. 69-169). Switzerland: Springer. https://doi.org/10.1007/978-3-319-28071-4_3
Tomescu, A. M. F., Rothwell, G. W., & Honegger, R. (2009). A new genus and species of filamentous microfossil of cyanobacterial affinity from Early Silurian fluvial environments (lower Massanutten Sandstone, Virginia, USA). Botanical Journal of the Linnean Society, 160(3), 284-289. https://doi.org/10.1111/j.1095-8339.2009.00980.x
Tomescu, A. M. F., Tate, R. W., Mack, N. G., & Calder, V. J. (2010). Simulating fossilization to resolve the taxonomic affinities of thalloid fossils in Early Silurian (ca. 425 Ma) terrestrial assemblages. Bibliotheca Lichenologica, 105, 183-190.
Voytsekhovich, A. A., Mikhailyuk, T. I., & Darienko, T. M. (2011). Lichen photobionts. 1: Biodiversity, ecophysiology and co-evolution with the mycobiont. Algologia, 21, 3-26.
Weber, B., Büdel, B., & Belnap, J. (Eds.) (2016). Biological soil crusts: An organizing principle in drylands. Switzerland: Springer International Publishing.
Wellman, C. H., Steemans, P., & Vecoli, M. (2013). Palaeophytogeography of Ordovician-Silurian land plants. Geological Society, London, Memoirs, 38(1), 461-476. https://doi.org/10.1144/M38.29
Wellman, C. H., & Strother, P. K. (2015). The terrestrial biota prior to the origin of land plants (embryophytes): A review of the evidence. Palaeontology, 58(4), 601-627. https://doi.org/10.1111/pala.12172