Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton.
Assistive technologies
brain-computer interfaces
exoskeleton
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
12 Nov 2019
12 Nov 2019
Historique:
received:
30
09
2019
revised:
30
10
2019
accepted:
05
11
2019
entrez:
16
11
2019
pubmed:
16
11
2019
medline:
16
11
2019
Statut:
epublish
Résumé
When combined with assistive robotic devices, such as wearable robotics, brain/neural-computer interfaces (BNCI) have the potential to restore the capabilities of handicapped people to carry out activities of daily living. To improve applicability of such systems, workload and stress should be reduced to a minimal level. Here, we investigated the user's physiological reactions during the exhaustive use of the interfaces of a hybrid control interface. Eleven BNCI-naive healthy volunteers participated in the experiments. All participants sat in a comfortable chair in front of a desk and wore a whole-arm exoskeleton as well as wearable devices for monitoring physiological, electroencephalographic (EEG) and electrooculographic (EoG) signals. The experimental protocol consisted of three phases: (i) Set-up, calibration and BNCI training; (ii) Familiarization phase; and (iii) Experimental phase during which each subject had to perform EEG and EoG tasks. After completing each task, the NASA-TLX questionnaire and self-assessment manikin (SAM) were completed by the user. We found significant differences (
Identifiants
pubmed: 31726745
pii: s19224931
doi: 10.3390/s19224931
pmc: PMC6891352
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Horizon 2020 Framework Programme
ID : 64532
Organisme : Ministerio de Ciencia y Tecnología
ID : DPI2015-70415-C2-R
Références
Front Hum Neurosci. 2015 Jun 02;9:308
pubmed: 26082705
Neurosci Biobehav Rev. 2014 Jul;44:58-75
pubmed: 23116991
Sci Rep. 2018 Jul 17;8(1):10823
pubmed: 30018334
Prog Brain Res. 2016;228:163-83
pubmed: 27590969
J Neural Eng. 2010 Apr;7(2):26007
pubmed: 20332550
J Neurosci Methods. 2010 Apr 30;188(1):165-73
pubmed: 20153371
Clin Neurophysiol. 1999 Nov;110(11):1842-57
pubmed: 10576479
J Behav Ther Exp Psychiatry. 1994 Mar;25(1):49-59
pubmed: 7962581
Biomed Tech (Berl). 2015 Jun;60(3):199-205
pubmed: 25490027
Front Neurosci. 2010 Apr 21;4:30
pubmed: 20582271
Neurobiol Dis. 2015 Nov;83:172-9
pubmed: 25489973
J Neural Eng. 2017 Feb;14(1):016015
pubmed: 28068293
PLoS One. 2017 Apr 28;12(4):e0176674
pubmed: 28453547
J Neuroeng Rehabil. 2012 Jun 09;9:36
pubmed: 22681653
J Neural Eng. 2007 Dec;4(4):L23-9
pubmed: 18057501
Appl Ergon. 2009 Jan;40(1):23-32
pubmed: 18353277
Int J Psychophysiol. 2015 Sep;97(3):271-6
pubmed: 25091286
Sci Robot. 2016 Dec 6;1(1):
pubmed: 33157855
IEEE Trans Biomed Eng. 2015 Jul;62(7):1706-17
pubmed: 25680205
J Neuroeng Rehabil. 2013 Jul 03;10:66
pubmed: 23822118
Front Neuroinform. 2011 Nov 24;5:30
pubmed: 22131973
J Neuroeng Rehabil. 2017 Jan 7;14(1):2
pubmed: 28061779
J Neuroeng Rehabil. 2014 Dec 16;11:165
pubmed: 25510922
IEEE Trans Neural Syst Rehabil Eng. 2017 Apr;25(4):345-356
pubmed: 28092565
Front Neurol. 2012 Jul 18;3:114
pubmed: 22826701
Int J Psychophysiol. 2012 Mar;83(3):336-41
pubmed: 22172335
Ergonomics. 1982 Jul;25(7):663-72
pubmed: 7128574
J Neural Eng. 2014 Oct;11(5):056007
pubmed: 25082743