Tandem Use of Optical Sensing and Machine Learning for the Determination of Absolute Configuration, Enantiomeric and Diastereomeric Ratios, and Concentration of Chiral Samples.
UV spectroscopy
chirality sensing
circular dichroism
machine learning
stereoisomer analysis
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
03 02 2020
03 02 2020
Historique:
received:
09
10
2019
revised:
04
11
2019
pubmed:
13
11
2019
medline:
13
11
2019
entrez:
13
11
2019
Statut:
ppublish
Résumé
We have developed an optical method for accurate concentration, er, and dr analysis of amino alcohols based on a simple mix-and-measure workflow that is fully adaptable to multiwell plate technology and microscale analysis. The conversion of the four aminoindanol stereoisomers with salicylaldehyde to the corresponding Schiff base allows analysis of the dr based on a change in the UV maximum at 420 nm that is very different for the homo- and heterochiral diastereomers and of the concentration of the sample using a hypsochromic shift of another absorption band around 340 nm that is independent of the analyte stereochemistry. Subsequent in situ formation of Cu
Identifiants
pubmed: 31714669
doi: 10.1002/anie.201912904
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2440-2448Informations de copyright
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
D. W. Robbins, J. F. Hartwig, Science 2011, 333, 1423-1427;
A. McNally, C. K. Prier, D. W. C. MacMillan, Science 2011, 334, 1114-1117;
A. Buitrago Santanilla, E. L. Regalado, T. Pereira, M. Shevlin, K. Bateman, L. C. Campeau, J. Schneeweis, S. Berritt, Z.-C. Shi, P. Nantermet, Y. Liu, R. Helmy, C. J. Welch, P. Vachal, I. W. Davies, T. Cernak, S. D. Dreher, Science 2015, 347, 49-53.
K. D. Collins, T. Gensch, F. Glorius, Nat. Chem. 2014, 6, 859-871.
C. J. Welch, Chirality 2009, 21, 114-118;
D. D. Kotoni, A. Ciogli, C. Molinaro, I. D'Acquarica, J. Kocergin, T. Szczerba, H. Ritchie, C. Villani, F. Gasparrini, Anal. Chem. 2012, 84, 6805-6813;
D. C. Patel, F. M. Wahab, D. W. Armstrong, Z. S. Breitbach, J. Chromatogr. A 2016, 1467, 2-18;
C. L. Barhate, L. A. Joyce, A. A. Makarov, K. Zawatzky, F. Bernardoni, W. A. Schafer, D. W. Armstrong, C. J. Welch, E. L. Regalado, Chem. Commun. 2017, 53, 509-512.
J. Guo, J. Wu, G. Siuzdak, M. G. Finn, Angew. Chem. Int. Ed. 1999, 38, 1755-1758;
Angew. Chem. 1999, 111, 1868-1871;
M. T. Reetz, M. H. Becker, H.-W. Klein, D. Stockigt, Angew. Chem. Int. Ed. 1999, 38, 1758-1761;
Angew. Chem. 1999, 111, 1872-1875;
C. Markert, A. Pfaltz, Angew. Chem. Int. Ed. 2004, 43, 2498-2500;
Angew. Chem. 2004, 116, 2552-2554;
C. A. Müller, C. Markert, A. M. Teichert, A. Pfaltz, Chem. Commun. 2009, 1607-1618;
C. Ebner, C. A. Muller, C. Markert, A. Pfaltz, J. Am. Chem. Soc. 2011, 133, 4710-4713;
S. Piovesana, R. Samperi, A. Laganà, M. Bella, Chem. Eur. J. 2013, 19, 11478-11494.
M. T. Reetz, M. H. Becker, K. M. Kuhling, A. Holzwarth, Angew. Chem. Int. Ed. 1998, 37, 2647-2650;
Angew. Chem. 1998, 110, 2792-2795;
P. Tielmann, M. Boese, M. Luft, M. T. Reetz, Chem. Eur. J. 2003, 9, 3882-3887.
M. T. Reetz, A. Eipper, P. Tielmann, R. Mynott, Adv. Synth. Catal. 2002, 344, 1008-1016;
M. A. Evans, J. P. Morken, J. Am. Chem. Soc. 2002, 124, 9020-9021;
M.-S. Seo, H. Kim, J. Am. Chem. Soc. 2015, 137, 14190-14195;
Y. Zhao, T. M. Swager, J. Am. Chem. Soc. 2015, 137, 3221-3224;
H. Huang, G. Bian, H. Zong, Y. Wang, S. Yang, H. Yue, L. Song, H. Fan, Org. Lett. 2016, 18, 2524-2527;
L. Yang, T. Wenzel, R. T. Williamson, M. Christensen, W. Schafer, C. J. Welch, ACS Cent. Sci. 2016, 2, 332-340;
G. Bian, S. Yang, H. Huang, H. Zong, L. Song, H. Fan, X. Sun, Chem. Sci. 2016, 7, 932-938;
G. Storch, M. Haas, O. Trapp, Chem. Eur. J. 2017, 23, 5414;
Q. H. Luu, K. G. Lewis, A. Banerjee, N. Bhuvanesh, J. A. Gladysz, Chem. Sci. 2018, 9, 5087.
M. T. Reetz, K. M. Kuhling, A. Deege, H. Hinrichs, D. Belder, Angew. Chem. Int. Ed. 2000, 39, 3891-3893;
Angew. Chem. 2000, 112, 4049-4052.
P. Abato, C. T. Seto, J. Am. Chem. Soc. 2001, 123, 9206-9207;
F. Taran, C. Gauchet, B. Mohar, S. Meunier, A. Valleix, P. Y. Renard, C. Creminon, J. Grassi, A. Wagner, C. Mioskowski, Angew. Chem. Int. Ed. 2002, 41, 124-127;
Angew. Chem. 2002, 114, 132-135;
M. Matsushita, K. Yoshida, N. Yamamoto, P. Wirsching, R. A. Lerner, K. D. Janda, Angew. Chem. Int. Ed. 2003, 42, 5984-5987;
Angew. Chem. 2003, 115, 6166-6169;
S. Dey, D. R. Powell, C. Hu, D. B. Berkowitz, Angew. Chem. Int. Ed. 2007, 46, 7010-7014;
Angew. Chem. 2007, 119, 7140-7144;
J. A. Friest, S. Broussy, W. J. Chung, D. B. Berkowitz, Angew. Chem. Int. Ed. 2011, 50, 8895-8899;
Angew. Chem. 2011, 123, 9057-9061;
F. Biedermann, W. M. Nau, Angew. Chem. Int. Ed. 2014, 53, 5694-5699;
Angew. Chem. 2014, 126, 5802-5807;
T. A. Feagin, D. P. V. Olsen, Z. C. Headman, J. M. Heemstra, J. Am. Chem. Soc. 2015, 137, 4198-4206.
G. A. Korbel, G. Lalic, M. D. Shair, J. Am. Chem. Soc. 2001, 123, 361-362;
L. Pu, Chem. Rev. 2004, 104, 1687-1716;
D. Leung, S. O. Kang, E. V. Anslyn, Chem. Soc. Rev. 2012, 41, 448-479;
C. Wolf, K. W. Bentley, Chem. Soc. Rev. 2013, 42, 5408-5424; For a recent Perspective on this topic:
B. T. Herrera, S. L. Pilicer, E. V. Anslyn, L. A. Joyce, C. Wolf, J. Am. Chem. Soc. 2018, 140, 10385-10401.
T. D. James, K. R. A. S. Sandanayake, S. Shinkai, Nature 1995, 374, 345-347;
X. Mei, C. Wolf, J. Am. Chem. Soc. 2004, 126, 14736-14737;
C. Wolf, S. L. Liu, B. C. Reinhardt, Chem. Commun. 2006, 4242-4244;
X. Mei, C. Wolf, J. Am. Chem. Soc. 2006, 128, 13326-13327;
X. He, Q. Zhang, X. Liu, L. Lin, X. Feng, Chem. Commun. 2011, 47, 11641-11643;
S. Yu, L. Pu, J. Am. Chem. Soc. 2010, 132, 17698-17700;
S. Yu, W. Plunkett, M. Kim, L. Pu, J. Am. Chem. Soc. 2012, 134, 20282-20285;
K. Wen, S. Yu, Z. Huang, L. Chen, M. Xiao, X. Yu, L. Pu, J. Am. Chem. Soc. 2015, 137, 4517-4524;
A. Akdeniz, L. Mosca, T. Minami, P. Anzenbacher, Jr., Chem. Comm. 2015, 51, 5770-5773;
E. G. Shcherbakova, T. Minami, V. Brega, T. D. James, P. Anzenbacher, Jr., Angew. Chem. Int. Ed. 2015, 54, 7130-7133;
Angew. Chem. 2015, 127, 7236-7239;
A. Akdeniz, T. Minami, S. Watanabe, M. Yokoyama, T. Ema, P. Anzenbacher, Jr., Chem. Sci. 2016, 7, 2016-2022;
L. Pu, Acc. Chem. Res. 2017, 50, 1032-1040.
L. Zhu, E. V. Anslyn, J. Am. Chem. Soc. 2004, 126, 3676-3677.
L. Zhu, S. H. Shabbir, E. V. Anslyn, Chem. Eur. J. 2007, 13, 99-104;
P. Zhang, C. Wolf, Chem. Commun. 2013, 49, 7010-7012;
K. W. Bentley, C. Wolf, J. Am. Chem. Soc. 2013, 135, 12200-12203;
P. Zardi, K. Wurst, G. Licini, C. Zonta, J. Am. Chem. Soc. 2017, 139, 15616;
F. Y. Thanzeel, C. Wolf, Angew. Chem. Int. Ed. 2017, 56, 7276-7281;
Angew. Chem. 2017, 129, 7382-7387.
S. H. Shabbir, J. R. Clinton, E. V. Anslyn, Proc. Natl. Acad. Sci. USA 2009, 106, 10487-10492;
S. Nieto, J. M. Dragna, E. V. Anslyn, Chem. Eur. J. 2010, 16, 227-232;
K. W. Bentley, D. Proano, C. Wolf, Nat. Commun. 2016, 7, 12539;
E. G. Shcherbakova, V. Brega, V. M. Lynch, T. D. James, P. Anzenbacher, Chem. Eur. J. 2017, 23, 10222-10229;
K. W. Bentley, P. Zhang, C. Wolf, Sci. Adv. 2016, 2, e1501162;
M. W. Giuliano, C. Y. Lin, D. K. Romney, S. J. Miller, E. V. Anslyn, Adv. Synth. Catal. 2015, 357, 2301-2309;
Z. A. De los Santos, C. Wolf, J. Am. Chem. Soc. 2016, 138, 13517-13520;
L. A. Joyce, E. C. Sherer, C. J. Welch, Chem. Sci. 2014, 5, 2855-2861;
F. Y. Thanzeel, K. Balaraman, C. Wolf, Nat. Commun. 2018, 9, 5323.
S. Nieto, V. M. Lynch, E. V. Anslyn, H. Kim, J. Chin, J. Am. Chem. Soc. 2008, 130, 9232-9233.
D. P. Iwaniuk, K. Yearick-Spangler, C. Wolf, J. Org. Chem. 2012, 77, 5203-5208.
S. S. Yu, L. Pu, Sci. China Chem. 2013, 56, 301-306.
B. T. Herrera, S. R. Moor, M. McVeigh, E. K. Roesner, F. Marini, E. V. Anslyn, J. Am. Chem. Soc. 2019, 141, 11151-11160.
C. Wolf, Dynamic Stereochemistry of Chiral Compounds, RSC Publishing, Cambridge, 2008, pp. 136-179.
S. L. Pilicer, P. R. Bakhshi, K. W. Bentley, C. Wolf, J. Am. Chem. Soc. 2017, 139, 1758-1761;
S. L. Pilicer, M. Mancinelli, A. Mazzanti, C. Wolf, Org. Biomol. Chem. 2019, 17, 6699-6705.
K. W. Bentley, Y. G. Nam, J. M. Murphy, C. Wolf, J. Am. Chem. Soc. 2013, 135, 18052-18055;
Z. A. De los Santos, L. A. Joyce, E. C. Sherer, C. J. Welch, C. Wolf, J. Org. Chem. 2019, 84, 4639-4645.
Z. A. De los Santos, C. C. Lynch, C. Wolf, Angew. Chem. Int. Ed. 2019, 58, 1198-1202;
Angew. Chem. 2019, 131, 1211-1215;
C. C. Lynch, Z. A. De los Santos, C. Wolf, Chem. Commun. 2019, 55, 6297-6300.
Selected examples:
M. Biswas, G. Pilet, J. Tercero, M. S. El Fallah, S. Mitra, Inorg. Chim. Acta 2009, 362, 2915-2920;
V. Chandrasekhar, T. Senapati, A. Dey, E. C. Sanudo, Inorg. Chem. 2011, 50, 1420-1428;
S. Ding, Y. Gao, Y. Ji, Y. Wang, Z. Liu, CrystEngComm 2013, 15, 5598-5601;
S. Dasgupta, I. Majumder, P. Chakraborty, E. Zangrando, A. Bauza, A. Frontera, D. Das, Eur. J. Inorg. Chem. 2017, 133-145;
K. Peewasan, M. P. Merkel, K. Zarschler, H. Stephan, C. E. Anson, A. K. Powell, RSC Adv. 2019, 9, 24087-24091.
T. Aratani, Y. Toneyoshi, T. Nagase, Tetrahedron Lett. 1975, 16, 1707-1710;
A. Aratani, Pure Appl. Chem. 1985, 57, 1839-1844;
C. Jiang, Z. Ming, Q. Tan, D. Qian, T. You, Enantiomer 2002, 7, 287-293;
G. Desimoni, G. Dusi, G. Faita, P. Quadrelli, P. P. Righetti, Tetrahedron 1995, 51, 4131-4144;
M. Itagaki, K. Hagiya, M. Kamitamari, K. Masumoto, K. Suenobu, Y. Yamamoto, Tetrahedron 2004, 60, 7835-7843.
CCDC 1953287 and 1953286 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.